ﻻ يوجد ملخص باللغة العربية
We study the spin relaxation in graphene due to magnetic moments induced by defects. We propose and employ in our studies a microscopic model that describes magnetic impurity scattering processes mediated by charge puddles. This model incorporates the spin texture related to the defect-induced state. We calibrate our model parameters using experimentally-inferred values. The results we obtain for the spin relaxation times are in very good agreement with experimental findings. Our study leads to a comprehensive explanation for the short spin relaxation times reported in the experimental literature. We also propose a new interpretation for the puzzling experimental observation of enhanced spin relaxation times in hydrogenated graphene samples in terms of a combined effect due to disorder configurations that lead to an increased coupling to the magnetic moments and the tunability of the defect-induced $pi$-like magnetism in graphene.
A principal motivation to develop graphene for future devices has been its promise for quantum spintronics. Hyperfine and spin-orbit interactions are expected to be negligible in single-layer graphene. Spin transport experiments, on the other hand, s
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. Using a mean field Hubbard model, we study the appearance of magnetic textures associated to removing a single atom (vacancy) an
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the non-local geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precess
In graphene, out-of-plane (flexural) vibrations and static ripples imposed by the substrate relax the electron spin, intrinsically protected by mirror symmetry. We calculate the relaxation times in different scenarios, accounting for all the possible
We separate localization and interaction effects in epitaxial graphene devices grown on the C-face of a 4H-SiC substrate by analyzing the low temperature conductivities. Weak localization and antilocalization are extracted at low magnetic fields, aft