ﻻ يوجد ملخص باللغة العربية
We numerically study the two-dimensional, area preserving, web map. When the map is governed by ergodic behavior, it is, as expected, correctly described by Boltzmann-Gibbs statistics, based on the additive entropic functional $S_{BG}[p(x)] = -kint dx,p(x) ln p(x)$. In contrast, possible ergodicity breakdown and transitory sticky dynamical behavior drag the map into the realm of generalized $q$-statistics, based on the nonadditive entropic functional $S_q[p(x)]=kfrac{1-int dx,[p(x)]^q}{q-1}$ ($q in {cal R}; S_1=S_{BG}$). We statistically describe the system (probability distribution of the sum of successive iterates, sensitivity to the initial condition, and entropy production per unit time) for typical values of the parameter that controls the ergodicity of the map. For small (large) values of the external parameter $K$, we observe $q$-Gaussian distributions with $q=1.935dots$ (Gaussian distributions), like for the standard map. In contrast, for intermediate values of $K$, we observe a different scenario, due to the fractal structure of the trajectories embedded in the chaotic sea. Long-standing non-Gaussian distributions are characterized in terms of the kurtosis and the box-counting dimension of chaotic sea.
The standard map, paradigmatic conservative system in the $(x,p)$ phase space, has been recently shown to exhibit interesting statistical behaviors directly related to the value of the standard map parameter $K$. A detailed numerical description is a
In recent years, statistical characterization of the discrete conservative dynamical systems (more precisely, paradigmatic examples of area-preserving maps such as the standard and the web maps) has been analyzed extensively and shown that, for large
To characterize local finite-time properties associated with transient chaos in open dynamical systems, we introduce an escape rate and fractal dimensions suitable for this purpose in a coarse-grained description. We numerically illustrate that these
We use direct statistical simulation (DSS) to find the low-order statistics of the well-known dynamical system, the Lorenz63 model. Instead of accumulating statistics from numerical simulation of the dynamical systems, we solve the equations of motio
In contrary to other 1D momentum-conserving lattices such as the Fermi-Pasta-Ulam $beta$ (FPU-$beta$) lattice, the 1D coupled rotator lattice is a notable exception which conserves total momentum while exhibits normal heat conduction behavior. The te