ﻻ يوجد ملخص باللغة العربية
Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit timescale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule have never been formally proved. In this work, we present analytical results for the slowest timescale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit timescale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit timescale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit timescale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest timescales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to nove
This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as ap
The chaperonin GroEL-GroES, a machine which helps some proteins to fold, cycles through a number of allosteric states, the $T$ state, with high affinity for substrate proteins (SPs), the ATP-bound $R$ state, and the $R^{primeprime}$ ($GroEL-ADP-GroES
We study a phase transition in parameter learning of Hidden Markov Models (HMMs). We do this by generating sequences of observed symbols from given discrete HMMs with uniformly distributed transition probabilities and a noise level encoded in the out
Knowing a biomolecules structure is inherently linked to and a prerequisite for any detailed understanding of its function. Significant effort has gone into developing technologies for structural characterization. These technologies do not directly p