ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling Narrow(est) IWA Coronagraphy with STIS BAR5 and BAR10 Occulters

370   0   0.0 ( 0 )
 نشر من قبل Glenn Schneider
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Space Telescope Imaging Spectrographs (STIS) BAR5 coronagraphic occulter was designed to provide high-contrast, visible-light, imaging in close (>= 0.15) angular proximity to bright point-sources. This is the smallest inner working angle (IWA) possible with HSTs suite of coronagraphically augmented instruments through its mission lifetime. The STIS BAR5 image plane occulter, however, was damaged (bent and deformed) pre-launch and had not been enabled for GO science use following the installation of the instrument in 1997, during HST servicing mission SM2. With the success of the HST GO 12923 program, discussed herein, we explored and verified the functionality and utility of the BAR5 occulter. Thus, despite its physical damage, with updates to the knowledge of the aperture mask metrology and target pointing requirements, a robust determination of achievable raw and PSF-subtracted stellocentric image contrasts and fidelity was conducted. We also investigated, and herein report on, the use of the BAR10 rounded corners as narrow-angle occulters and compare IWA vs. contrast performance for the BAR5, BAR10, and Wedge occulters. With that, we provide recommendations for the most efficacious BAR5 and BAR10 use on-orbit in support of GO science. With color-matched PSF-template subtracted coronagraphy, inclusive of a small (+/- 1/4 pixel) 3-point cross-bar dithering strategy we recommend, we find BAR5 can deliver effective ~ 0.2 IWA image contrast of ~ 4 x 10^-5 pixel^-1 to ~ 1 x 10^-8 pixel^-1 at 2. With the pointing updates (to the PDB SIAF.dat file and/or implemented through APT) that we identified, and with observing strategies we explored, we recommend the use of STIS BAR5 coronagraphy as a fully supported capability for unique GO science.



قيم البحث

اقرأ أيضاً

The Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) contains the only currently operating coronagraph in space that is not trained on the Sun. In an era of extreme--adaptive-optics--fed coronagraphs, and with the possibility of future space-based coronagraphs, we re-evaluate the contrast performance of the STIS CCD camera. The 50CORON aperture consists of a series of occulting wedges and bars, including the recently commissioned BAR5 occulter. We discuss the latest procedures in obtaining high contrast imaging of circumstellar disks and faint point sources with STIS. For the first time, we develop a noise model for the coronagraph, including systematic noise due to speckles, which can be used to predict the performance of future coronagraphic observations. Further, we present results from a recent calibration program that demonstrates better than $10^{-6}$ point-source contrast at 0.6, ranging to $3times10^{-5}$ point-source contrast at 0.25. These results are obtained by a combination of sub-pixel grid dithers, multiple spacecraft orientations, and post-processing techniques. Some of these same techniques will be employed by future space-based coronagraphic missions. We discuss the unique aspects of STIS coronagraphy relative to ground-based adaptive-optics--fed coronagraphs.
Spatially resolved scattered-light images of circumstellar (CS) debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, systemic archite ctures, and forces perturbing starlight-scattering CS material. Using HST/STIS optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in ten CS debris systems, and one mature protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances > 5 AU for the nearest stars, and simultaneously resolve disk substructures well beyond, corresponding to the giant planet and Kuiper belt regions in our Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. We present new results inclusive of fainter disks such as HD92945 confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures, significant asymmetries and complex morphologies include: HD181327 with a posited spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested interacting with the local ISM; HD15115 & HD32297, discussed also in the context of environmental interactions. These disks, and HD15745, suggest debris system evolution cannot be treated in isolation. For AU Mics edge-on disk, out-of-plane surface brightness asymmetries at > 5 AU may implicate one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.
The accumulation of aberrations along the optical path in a telescope produces distortions and speckles in the resulting images, limiting the performance of cameras at high angular resolution. It is important to achieve the highest possible sensitivi ty to faint sources such as planets, using both hardware and data analysis software. While analytic methods are efficient, real systems are better-modelled numerically, but such models with many parameters can be hard to understand, optimize and apply. Automatic differentiation software developed for machine learning now makes calculating derivatives with respect to aberrations straightforward for arbitrary optical systems. We apply this powerful new tool to enhance high-angular-resolution astronomical imaging. Self-calibrating observables such as the closure phase or bispectrum have been widely used in optical and radio astronomy to mitigate optical aberrations and achieve high-fidelity imagery. Kernel phases are a generalization of closure phases in the limit of small phase errors. Using automatic differentiation, we reproduce existing kernel phase theory within this framework and demonstrate an extension to the Lyot coronagraph, finding self-calibrating combinations of speckles which are resistant to phase noise, but only in the very high-wavefront-quality regime. As an illustrative example, we reanalyze Palomar adaptive optics observations of the binary alpha Ophiuchi, finding consistency between the new pipeline and the existing standard. We present a new Python package morphine that incorporates these ideas, with an interface similar to the popular package poppy, for optical simulation with automatic differentiation. These methods may be useful for designing improved astronomical optical systems by gradient descent.
The European Solar Telescope (EST) is a project of a new-generation solar telescope. It has a large aperture of 4~m, which is necessary for achieving high spatial and temporal resolution. The high polarimetric sensitivity of the EST will allow to mea sure the magnetic field in the solar atmosphere with unprecedented precision. Here, we summarise the recent advancements in the realisation of the EST project regarding the hardware development and the refinement of the science requirements.
Several Extreme Adaptive Optics (XAO) systems dedicated to the detection and characterisation of the exoplanets are currently in operation for 8-10 meter class telescopes. Coronagraphs are commonly used in these facilities to reject the diffracted li ght of an observed star and enable direct imaging and spectroscopy of its circumstellar environment. SHARK-NIR is a coronagraphic camera that will be implemented at the Large Binocular Telescope (LBT). After an extensive simulation campaign, SHARK-NIR team selected a suite of coronagraphic techniques to be implemented in the instrument in order to fulfil the scientific requirements. In summary, the Gaussian Lyot coronagraph is the option to serve all those science cases requiring field-stabilization and moderate contrast. Observations in pupil-stabilized mode to search for exoplanets can take advantage of three Shaped Pupil masks (SPC) and a Four-Quadrant Phase Mask (FQPM) coronagraph. The SPC are designed for high contrast on a small field close to the star and are robust to image and pupil jitter. The FQPM allows to access the entire scientific FoV (18x18) and delivers excellent performance in ideal conditions (high Strehl ratios), but performance is still good, both close and further away from the star, even at lower Strehl and with moderate vibrations. After the procurement phase, the coronagraphic masks were delivered to our labs and we started to test their performance on the optical bench and define the alignment procedures that will be employed in the final integration of the instrument in our cleaning room. In this article, we describe the tests that we performed in the lab with SHARK-NIR coronagraphs. We measured the contrast achievable with each technique in very-high Strehl conditions and defined the alignment-integration procedures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا