ﻻ يوجد ملخص باللغة العربية
It has been reported that a 5.7sigma directional muon excess coincident with the 2000 July 14 solar flare was registered by the L3 precision muon spectrometer [Ruiguang Wang, Astroparticle Phys., 31(2009) 149]. Using a same analysis method and similar criteria of event selection, we have analyzed the L3 precision muon spectrometer data during November 2000. The result shows that a 4.7sigma muon excess appeared at a time coincident with the solar flare of 8 of November 2000. This muon excess corresponds to above 40 GeV primary protons which came from a sky cell of solid angle 0.048 sr. The probability of being a background fluctuation is estimated to be about 0.1%. It has been convinced that solar protons could be accelerated to tens of GeV in those Class X solar flares which usually arose solar cosmic ray ground level enhancement (GLE) events. However, whether a Class M solar flare like the non-GLE event of 8 November 2000 may also accelerate solar protons to such high energies? It is interesting and noteworthy.
We have found an interesting event registered by the solar neutron telescopes installed at high mountains in Bolivia (5250 m a.s.l.) and Mexico (4600 m a.s.l.). The event was observed November 7th of 2004 in association with a large solar flare of ma
Context. Solar Energetic Particles (SEPs) with energy in the GeV range can propagate to Earth from their acceleration region near the Sun and produce Ground Level Enhancements (GLEs). The traditional approach to interpreting and modelling GLE observa
The Soft X-ray Telescope (SXT) on board Yohkoh revealed that the ejection of X-ray emitting plasmoid is sometimes observed in a solar flare. It was found that the ejected plasmoid is strongly accelerated during a peak in the hard X-ray emission of th
Solar neutrons have been detected using the neutron monitor located at Mt. Chacaltaya, Bolivia, in association with a large solar flare on November 24, 2000. This is the first detection of solar neutrons by the neutron monitor that have been reported
In the standard model of solar flares, a large-scale reconnection current sheet is postulated as the central engine for powering the flare energy release and accelerating particles. However, where and how the energy release and particle acceleration