ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of the Josephson Junction Laser

160   0   0.0 ( 0 )
 نشر من قبل Steven Simon
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an analytic theory for the recently demonstrated Josephson Junction laser (Science 355, p. 939, 2017). By working in the time-domain representation (rather than the frequency-domain) a single non-linear equation is obtained for the dynamics of the device, which is fully solvable in some regimes of operation. The nonlinear drive is seen to lead to mode-locked output, with a period set by the round-trip time of the resonant cavity.



قيم البحث

اقرأ أيضاً

Superconducting electronic devices have re-emerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation and long coherence times. An ultimate demonstration of coherence is lasing. We use one of th e fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multi-mode superconducting cavity. A dc voltage bias to the junction provides a source of microwave photons, while the circuits nonlinearity allows for efficient down-conversion of higher order Josephson frequencies down to the cavitys fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
The authors report on the design and measurement of a reflective single-pole single-throw microwave switch with no internal power dissipation, based on a superconducting circuit containing a single Josephson junction. The data demonstrate the switch operation with 2 GHz instantaneous bandwidth centered at 10 GHz, low insertion loss, and better than 20 dB on/off ratio. The switchs measured performance agrees well with simulations for input powers up to -100 dBm. An extension of the demonstrated circuit to implement a single-pole double-throw switch is shown in simulation.
We present an experimental investigation of stochastic switching of a bistable Josephson junctions array resonator with a resonance frequency in the GHz range. As the device is in the regime where the anharmonicity is on the order of the linewidth, t he bistability appears for a pump strength of only a few photons. We measure the dynamics of the bistability by continuously observing the jumps between the two metastable states, which occur with a rate ranging from a few Hz down to a few mHz. The switching rate strongly depends on the pump strength, readout strength and the temperature, following Kramers law. The interplay between nonlinearity and coupling, in this little explored regime, could provide a new resource for nondemolition measurements, single photon switches or even elements for autonomous quantum error correction.
244 - James A. Blackburn 2020
Switching current distributions have for decades been an indispensable diagnostic tool for studying Josephson junctions. They have played a key role in testing the conjecture of a macroscopic quantum state in junctions at millikelvin temperatures. Th e conventional basis of the test has been the observation of temperature independence of SCD peak widths, and that led to affirmative conclusions about a crossover. A different criterion is proposed here - the distance of the SCD peak from the junction critical current - and its efficacy is demonstrated. This test has distinct advantages in terms of precision, and it is found that, for three example experiments, the evidence for a crossover to the conjectured macroscopic quantum state is unequivocally negative. The implications of this finding for superconducting qubits are considered.
In this work we study the magnetic remanence exhibited by Josephson junction arrays in response to an excitation with an AC magnetic field. The effect, predicted by numerical simulations to occur in a range of temperatures, is clearly seen in our tri dimensional disordered arrays. We also discuss the influence of the critical current distribution on the temperature interval within which the array develops a magnetic remanence. This effect can be used to determine the critical current distribution of an array.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا