ﻻ يوجد ملخص باللغة العربية
New real structure-preserving decompositions are introduced to develop fast and robust algorithms for the (right) eigenproblem of general quaternion matrices. Under the orthogonally JRS-symplectic transformations, the Francis JRS-QR step and the JRS-QR algorithm are firstly proposed for JRS-symmetric matrices and then applied to calculate the Schur forms of quaternion matrices. A novel quaternion Givens matrix is defined and utilized to compute the QR factorization of quaternion Hessenberg matrices. An implicit double shift quaternion QR algorithm is presented with a technique for automatically choosing shifts and within real operations. Numerical experiments are provided to demonstrate the efficiency and accuracy of newly proposed algorithms.
Spectral computations of infinite-dimensional operators are notoriously difficult, yet ubiquitous in the sciences. Indeed, despite more than half a century of research, it is still unknown which classes of operators allow for computation of spectra a
We propose a new Lagrange multiplier approach to construct positivity preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity with the Karush-Kuhn-Tucker (KKT) conditions
The structure-preserving doubling algorithm (SDA) is a fairly efficient method for solving problems closely related to Hamiltonian (or Hamiltonian-like) matrices, such as computing the required solutions to algebraic Riccati equations. However, for l
In emph{Guo et al, arXiv:2005.08288}, we propose a decoupled form of the structure-preserving doubling algorithm (dSDA). The method decouples the original two to four coupled recursions, enabling it to solve large-scale algebraic Riccati equations an
We design a fast implicit real QZ algorithm for eigenvalue computation of structured companion pencils arising from linearizations of polynomial rootfinding problems. The modified QZ algorithm computes the generalized eigenvalues of an $Ntimes N$ str