ﻻ يوجد ملخص باللغة العربية
We report on the transition from magnetic edge to electric edge transport in a split magnetic gate device which applies a notch magnetic field to a two-dimensional electron gas. The gate bias allows tuning the overlap of magnetic and electric edge wavefunctions on the scale of the magnetic length. Conduction at magnetic edges - in the 2D-bulk - is found to compete with conduction at electric edges until magnetic edges become depleted. Current lines then move to the electrostatic edges as in the conventional quantum Hall picture. The conductivity was modelled using the quantum Boltzmann equation in the exact hybrid potential. The theory predicts the features of the bulk-edge cross-over in good agreement with experiment.
The edge of a two-dimensional electron system (2DES) in a magnetic field consists of one-dimensional (1D) edge-channels that arise from the confining electric field at the edge of the specimen$^{1-3}$. The crossed electric and magnetic fields, E x B,
The interplay between different orders is of fundamental importance in physics. The spontaneous, symmetry-breaking charge order, responsible for the stripe or the nematic phase, has been of great interest in many contexts where strong correlations ar
We study a two-terminal graphene Josephson junction with contacts shaped to form a narrow constriction, less than 100nm in length. The contacts are made from type II superconducting contacts and able to withstand magnetic fields high enough to reach
We study the effect of backward scatterings in the tunneling at a point contact between the edges of a second level hierarchical fractional quantum Hall states. A universal scaling dimension of the tunneling conductance is obtained only when both of
A two-dimensional (2D) topological insulator (TI) exhibits the quantum spin Hall (QSH) effect, in which topologically protected spin-polarized conducting channels exist at the sample edges. Experimental signatures of the QSH effect have recently been