ترغب بنشر مسار تعليمي؟ اضغط هنا

CRAFT: A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance

80   0   0.0 ( 0 )
 نشر من قبل Faisal Shahzad
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is the most widely used technique to deal with hard failures. Application-level CR is the most effective CR technique in terms of overhead efficiency but it takes a lot of implementation effort. This work presents the implementation of our C++ based library CRAFT (Checkpoint-Restart and Automatic Fault Tolerance), which serves two purposes. First, it provides an extendable library that significantly eases the implementation of application-level checkpointing. The most basic and frequently used checkpoint data types are already part of CRAFT and can be directly used out of the box. The library can be easily extended to add more data types. As means of overhead reduction, the library offers a build-in asynchronous checkpointing mechanism and also supports the Scalable Checkpoint/Restart (SCR) library for node level checkpointing. Second, CRAFT provides an easier interface for User-Level Failure Mitigation (ULFM) based dynamic process recovery, which significantly reduces the complexity and effort of failure detection and communication recovery mechanism. By utilizing both functionalities together, applications can write application-level checkpoints and recover dynamically from process failures with very limited programming effort. This work presents the design and use of our library in detail. The associated overheads are thoroughly analyzed using several benchmarks.



قيم البحث

اقرأ أيضاً

Fault tolerance for the upcoming exascale generation has long been an area of active research. One of the components of a fault tolerance strategy is checkpointing. Petascale-level checkpointing is demonstrated through a new mechanism for virtualizat ion of the InfiniBand UD (unreliable datagram) mode, and for updating the remote address on each UD-based send, due to lack of a fixed peer. Note that InfiniBand UD is required to support modern MPI implementations. An extrapolation from the current results to future SSD-based storage systems provides evidence that the current approach will remain practical in the exascale generation. This transparent checkpointing approach is evaluated using a framework of the DMTCP checkpointing package. Results are shown for HPCG (linear algebra), NAMD (molecular dynamics), and the NAS NPB benchmarks. In tests up to 32,752 MPI processes on 32,752 CPU cores, checkpointing of a computation with a 38 TB memory footprint in 11 minutes is demonstrated. Runtime overhead is reduced to less than 1%. The approach is also evaluated across three widely used MPI implementations.
Scaling supercomputers comes with an increase in failure rates due to the increasing number of hardware components. In standard practice, applications are made resilient through checkpointing data and restarting execution after a failure occurs to re sume from the latest check-point. However, re-deploying an application incurs overhead by tearing down and re-instating execution, and possibly limiting checkpointing retrieval from slow permanent storage. In this paper we present Reinit++, a new design and implementation of the Reinit approach for global-restart recovery, which avoids application re-deployment. We extensively evaluate Reinit++ contrasted with the leading MPI fault-tolerance approach of ULFM, implementing global-restart recovery, and the typical practice of restarting an application to derive new insight on performance. Experimentation with three different HPC proxy applications made resilient to withstand process and node failures shows that Reinit++ recovers much faster than restarting, up to 6x, or ULFM, up to 3x, and that it scales excellently as the number of MPI processes grows.
Unified Virtual Memory (UVM) was recently introduced on recent NVIDIA GPUs. Through software and hardware support, UVM provides a coherent shared memory across the entire heterogeneous node, migrating data as appropriate. The older CUDA programming s tyle is akin to older large-memory UNIX applications which used to directly load and unload memory segments. Newer CUDA programs have started taking advantage of UVM for the same reasons of superior programmability that UNIX applications long ago switched to assuming the presence of virtual memory. Therefore, checkpointing of UVM will become increasingly important, especially as NVIDIA CUDA continues to gain wider popularity: 87 of the top 500 supercomputers in the latest listings are GPU-accelerated, with a current trend of ten additional GPU-based supercomputers each year. A new scalable checkpointing mechanism, CRUM (Checkpoint-Restart for Unified Memory), is demonstrated for hybrid CUDA/MPI computations across multiple computer nodes. CRUM supports a fast, forked checkpointing, which mostly overlaps the CUDA computation with storage of the checkpoint image in stable storage. The runtime overhead of using CRUM is 6% on average, and the time for forked checkpointing is seen to be a factor of up to 40 times less than traditional, synchronous checkpointing.
The share of the top 500 supercomputers with NVIDIA GPUs is now over 25% and continues to grow. While fault tolerance is a critical issue for supercomputing, there does not currently exist an efficient, scalable solution for CUDA applications on NVID IA GPUs. CRAC (Checkpoint-Restart Architecture for CUDA) is new checkpoint-restart solution for fault tolerance that supports the full range of CUDA applications. CRAC combines: low runtime overhead (approximately 1% or less); fast checkpoint-restart; support for scalable CUDA streams (for efficient usage of all of the thousands of GPU cores); and support for the full features of Unified Virtual Memory (eliminating the programmers burden of migrating memory between device and host). CRAC achieves its flexible architecture by segregating application code (checkpointed) and its external GPU communication via non-reentrant CUDA libraries (not checkpointed) within a single processs memory. This eliminates the high overhead of inter-process communication in earlier approaches, and has fewer limitations.
Serverless computing has grown in popularity in recent years, with an increasing number of applications being built on Functions-as-a-Service (FaaS) platforms. By default, FaaS platforms support retry-based fault tolerance, but this is insufficient f or programs that modify shared state, as they can unwittingly persist partial sets of updates in case of failures. To address this challenge, we would like atomic visibility of the updates made by a FaaS application. In this paper, we present AFT, an atomic fault tolerance shim for serverless applications. AFT interposes between a commodity FaaS platform and storage engine and ensures atomic visibility of updates by enforcing the read atomic isolation guarantee. AFT supports new protocols to guarantee read atomic isolation in the serverless setting. We demonstrate that aft introduces minimal overhead relative to existing storage engines and scales smoothly to thousands of requests per second, while preventing a significant number of consistency anomalies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا