ﻻ يوجد ملخص باللغة العربية
We study quantum-state transfer in $XX$ spin-$1/2$ chains where both communicating spins are weakly coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modelled by long-range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the channel is able to perform an almost perfect quantum-state transfer in most of the samples even in the presence of significant amounts of disorder provided the degree of those correlations is strong enough. In that case, we also show that the lack of mirror symmetry does not affect much the likelihood of having high-quality outcomes. Our results advance a further step in designing robust devices for quantum communication protocols.
Quantum-state transfer with fidelity higher than 0.99 can be achieved in the ballistic regime of an arbitrarily long one-dimensional chain with uniform nearest-neighbor interaction, except for the two pairs of mirror symmetric extremal bonds, say x (
We derive the optimal analytical quantum-state-transfer control solutions for two disparate quantum memory blocks. Employing the SLH formalism description of quantum network theory, we calculate the full quantum dynamics of system populations, which
It is shown that by switching a specific time-dependent interaction between a harmonic oscillator and a transmission line (a waveguide, an optical fiber, etc.) the quantum state of the oscillator can be transferred into that of another oscillator cou
We demonstrate the ability to control the spontaneous emission from a superconducting qubit coupled to a cavity. The time domain profile of the emitted photon is shaped into a symmetric truncated exponential. The experiment is enabled by a qubit coup
Quantum state propagation over binary tree configurations is studied in the context of quantum spin networks. For binary tree of order two a simple protocol is presented which allows to achieve arbitrary high transfer fidelity. It does not require fi