ﻻ يوجد ملخص باللغة العربية
Although the most luminous class of neutron star low mass X-ray binaries, known as Z sources, have been well studied, their behavior is not fully understood. In particular, what causes these sources to trace out the characteristic Z-shaped pattern on color-color or hardness-intensity diagrams is not well known. By studying the physical properties of the different spectral states of these sources, we may better understand such variability. With that goal in mind, we present a recent NuSTAR observation of the Z source GX 349+2, which spans approximately 2 days, and covers all its spectral states. By creating a hardness-intensity diagram we were able to extract five spectra and trace the change in spectral parameters throughout the Z-track. GX 349+2 shows a strong, broad Fe K$alpha$ line in all states, regardless of the continuum model used. Through modeling of the reflection spectrum and Fe K$alpha$ line we find that in most states the inner disk radius is consistent with remaining unchanged at an average radius of 17.5 $R_g$ or 36.4 km for a canonical 1.4 $M_odot$ neutron star. During the brightest flaring branch, however, the inner disk radius from reflection is not well constrained.
Z sources are bright neutron-star X-ray binaries, accreting at around the Eddington limit. We analyze the 68 RXTE observations (270 ks) of Sco-like Z source GX 17+2 made between 1999 October 3-12, covering a complete Z track. We create and fit color-
We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum
We have analysed archived Ginga data on the Z source Sco X-2 (GX349+2). We present the first detailed investigation of its X-ray fast-time variability, as a function of position in the Z track. During the two-day observation over the period 5-7 March
We present the analysis of seven emph{Chandra} High Energy Transmission Grating Spectrometer and six simultaneous emph{RXTE} Proportional Counter Array observations of the persistent neutron star (NS) low-mass X-ray binary GX 13+1 on its normal and h
We fit the observed high ionisation X-ray absorption lines in the neutron star binary GX13+1 with a full simulation of a thermal-radiative wind. This uses a radiation hydrodynamic code coupled to Monte Carlo radiation transfer to compute the observed