The integrability of the $Lambda-$Einstein-nonlinear $SU(2)$ $sigma$-model with nonvanishing cosmological charge is studied. We apply the method of singularity analysis of differential equations and we show that the equations for the gravitational field are integrable. The first few terms of the solution are presented.
In this paper, we construct the first analytic examples of (3+1)-dimensional self-gravitating regular cosmic tube solutions which are superconducting, free of curvature singularities and with non-trivial topological charge in the Einstein-SU(2) non-l
inear sigma-model. These gravitating topological solitons at a large distance from the axis look like a (boosted) cosmic string with an angular defect given by the parameters of the theory, and near the axis, the parameters of the solutions can be chosen so that the metric is singularity free and without angular defect. The curvature is concentrated on a tube around the axis. These solutions are similar to the Cohen-Kaplan global string but regular everywhere, and the non-linear sigma-model regularizes the gravitating global string in a similar way as a non-Abelian field regularizes the Dirac monopole. Also, these solutions can be promoted to those of the fully coupled Einstein-Maxwell non-linear sigma-model in which the non-linear sigma-model is minimally coupled both to the U(1) gauge field and to General Relativity. The analysis shows that these solutions behave as superconductors as they carry a persistent current even when the U(1) field vanishes. Such persistent current cannot be continuously deformed to zero as it is tied to the topological charge of the solutions themselves. The peculiar features of the gravitational lensing of these gravitating solitons are shortly discussed.
We investigate the influence of a brane on the vacuum expectation value (VEV) of the current density for a charged fermionic field in background of locally AdS spacetime with an arbitrary number of toroidally compact dimensions and in the presence of
a constant gauge field. Along compact dimensions the field operator obeys quasiperiodicity conditions with arbitrary phases and on the brane it is constrained by the bag boundary condition. The VEVs for the charge density and the components of the current density along uncompact dimensions vanish. The components along compact dimensions are decomposed into the brane-free and brane-induced contributions. The behavior of the latter in various asymptotic regions of the parameters is investigated. It particular, it is shown that the brane-induced contribution is mainly located near the brane and vanishes on the AdS boundary and on the horizon. An important feature is the finiteness of the current density on the brane. Applications are given to $Z_2$-symmetric braneworlds of the Randall-Sundrum type with compact dimensions for two classes of boundary conditions on the fermionic field. In the special case of three-dimensional spacetime, the corresponding results are applied for the investigation of the edge effects on the ground state current density induced in curved graphene tubes by an enclosed magnetic flux.
The problem of computing the anomalous dimensions of a class of (nearly) half-BPS operators with a large R-charge is reduced to the problem of diagonalizing a Cuntz oscillator chain. Due to the large dimension of the operators we consider, non-planar
corrections must be summed to correctly construct the Cuntz oscillator dynamics. These non-planar corrections do not represent quantum corrections in the dual gravitational theory, but rather, they account for the backreaction from the heavy operator whose dimension we study. Non-planar corrections accounting for quantum corrections seem to spoil integrability, in general. It is interesting to ask if non-planar corrections that account for the backreaction also spoil integrability. We find a limit in which our Cuntz chain continues to admit extra conserved charges suggesting that integrability might survive.
Following previous works on generalized Abelian Proca theory, also called vector Galileon, we investigate the massive extension of an SU(2) gauge theory, i.e., the generalized SU(2) Proca model, which could be dubbed non-Abelian vector Galileon. This
particular symmetry group permits fruitful applications in cosmology such as inflation driven by gauge fields. Our approach consists in building, in an exhaustive way, all the Lagrangians containing up to six contracted Lorentz indices. For this purpose, and after identifying by group theoretical considerations all the independent Lagrangians which can be written at these orders, we consider the only linear combinations propagating three degrees of freedom and having healthy dynamics for their longitudinal mode, i.e., whose pure Stuckelberg contribution turns into the SU(2) multi-Galileon dynamics. Finally, and after having considered the curved space-time expansion of these Lagrangians, we discuss the form of the theory at all subsequent orders.
We present novel analytic hairy black holes with a flat base manifold in the (3+1)-dimensional Einstein SU(2)-Skyrme system with negative cosmological constant. We also construct (3+1)-dimensional black strings in the Einstein $SU(2)$-non linear sigm
a model theory with negative cosmological constant. The geometry of these black strings is a three-dimensional charged BTZ black hole times a line, without any warp factor. The thermodynamics of these configurations (and its dependence on the discrete hairy parameter) is analyzed in details. A very rich phase diagram emerges.