We describe the derivation and validation of redshift distribution estimates and their uncertainties for the galaxies used as weak lensing sources in the Dark Energy Survey (DES) Year 1 cosmological analyses. The Bayesian Photometric Redshift (BPZ) code is used to assign galaxies to four redshift bins between z=0.2 and 1.3, and to produce initial estimates of the lensing-weighted redshift distributions $n^i_{PZ}(z)$ for bin i. Accurate determination of cosmological parameters depends critically on knowledge of $n^i$ but is insensitive to bin assignments or redshift errors for individual galaxies. The cosmological analyses allow for shifts $n^i(z)=n^i_{PZ}(z-Delta z^i)$ to correct the mean redshift of $n^i(z)$ for biases in $n^i_{rm PZ}$. The $Delta z^i$ are constrained by comparison of independently estimated 30-band photometric redshifts of galaxies in the COSMOS field to BPZ estimates made from the DES griz fluxes, for a sample matched in fluxes, pre-seeing size, and lensing weight to the DES weak-lensing sources. In companion papers, the $Delta z^i$ are further constrained by the angular clustering of the source galaxies around red galaxies with secure photometric redshifts at 0.15<z<0.9. This paper details the BPZ and COSMOS procedures, and demonstrates that the cosmological inference is insensitive to details of the $n^i(z)$ beyond the choice of $Delta z^i$. The clustering and COSMOS validation methods produce consistent estimates of $Delta z^i$, with combined uncertainties of $sigma_{Delta z^i}=$0.015, 0.013, 0.011, and 0.022 in the four bins. We marginalize over these in all analyses to follow, which does not diminish the constraining power significantly. Repeating the photo-z procedure using the Directional Neighborhood Fitting (DNF) algorithm instead of BPZ, or using the $n^i(z)$ directly estimated from COSMOS, yields no discernible difference in cosmological inferences.