ﻻ يوجد ملخص باللغة العربية
The Daya Bay Experiment consists of eight identically designed detectors located in three underground experimental halls named as EH1, EH2, EH3, with 250, 265 and 860 meters of water equivalent vertical overburden, respectively. Cosmic muon events have been recorded over a two-year period. The underground muon rate is observed to be positively correlated with the effective atmospheric temperature and to follow a seasonal modulation pattern. The correlation coefficient $alpha$, describing how a variation in the muon rate relates to a variation in the effective atmospheric temperature, is found to be $alpha_{text{EH1}} = 0.362pm0.031$, $alpha_{text{EH2}} = 0.433pm0.038$ and $alpha_{text{EH3}} = 0.641pm0.057$ for each experimental hall.
China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R&D research for these MeV-scale neutrino
We report measurements of annual and diurnal modulations of the cosmic-ray muon rate in the Yangyang underground laboratory (Y2L) using 952 days of COSINE-100 data acquired between September 2016 and July 2019. A correlation of the muon rate with the
The Jiangmen Underground Neutrino Observatory (JUNO), a multi-purpose neutrino experiment, will use 20 kt liquid scintillator (LS). To achieve the physics goal of determining the neutrino mass ordering, 3$%$ energy resolution at 1 MeV is required. Th
Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the
The Daya Bay reactor antineutrino experiment is designed to make a precision measurement of the neutrino mixing angle theta13, and recently made the definitive discovery of its nonzero value. It utilizes a set of eight, functionally identical antineu