ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF

84   0   0.0 ( 0 )
 نشر من قبل Paolo Finocchiaro Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron indiced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n,{alpha}){alpha} cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.



قيم البحث

اقرأ أيضاً

The newly built second experimental area EAR2 of the n_TOF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experiment al procedure for the determination of the cross-section of the 7Be(n,{alpha}) reaction, which represents one of the focal points toward the solution of the cosmological Lithium abundance problem, and whose only measurement, at thermal energy, dates back to 1963. The apparently unsurmountable experimental difficulties stemming from the huge 7Be {gamma}-activity, along with the lack of a suitable neutron beam facility, had so far prevented further measurements. The detection system is subject to considerable radiation damage, but is capable of disentangling the rare reaction signals from the very high background. This newly developed setup could likely be useful also to study other challenging reactions requiring the detectors to be installed directly in the neutron beam.
63 - S. Alef , P. Bauer , D. Bayadilov 2019
The BGOOD experiment at the ELSA facility in Bonn has been commissioned within the framework of an international collaboration. The experiment pursues a systematic investigation of non-strange and strange meson photoproduction, in particular $t$-chan nel processes at low momentum transfer. The setup uniquely combines a central almost $4pi$ acceptance BGO crystal calorimeter with a large aperture forward magnetic spectrometer providing excellent detection of both neutral and charged particles, complementary to other setups such as Crystal Barrel, Crystal Ball, LEPS and CLAS.
The energy-dependent cross section of the 7Be(n,alpha)4He reaction, of interest for the so-called Cosmological Lithium Problem in Big Bang Nucleosynthesis, has been measured for the first time from 10 meV to 10 keV neutron energy. The challenges pose d by the short half-life of 7Be and by the low reaction cross section have been overcome at n_TOF thanks to an unprecedented combination of the extremely high luminosity and good resolution of the neutron beam in the new experimental area (EAR2) of the n_TOF facility at CERN, the availability of a sufficient amount of chemically pure 7Be, and a specifically designed experimental setup. Coincidences between the two alpha-particles have been recorded in two Si-7Be-Si arrays placed directly in the neutron beam. The present results are consistent, at thermal neutron energy, with the only previous measurement performed in the 60s at a nuclear reactor. The energy dependence here reported clearly indicates the inadequacy of the cross section estimates currently used in BBN calculations. Although new measurements at higher neutron energy may still be needed, the n_TOF results hint to a minor role of this reaction in BBN, leaving the long-standing Cosmological Lithium problem unsolved.
Among the reactions involved in the production and destruction of deuterium during Big Bang Nucleosynthesis, the deuterium-burning D(p,gamma)3He reaction has the largest uncertainty and limits the precision of theoretical estimates of primordial deut erium abundance. Here we report the results of a careful commissioning of the experimental setup used to measure the cross-section of the D(p,gamma)3He reaction at the Laboratory for Underground Nuclear Astrophysics of the Gran Sasso Laboratory (Italy). The commissioning was aimed at minimising all sources of systematic uncertainty in the measured cross sections. The overall systematic error achieved (< 3 %) will enable improved predictions of BBN deuterium abundance.
Cosmic muon induced neutrons in Pb are measured by direct neutron detection, using CLYC detectors. The detector set-up and preliminary results are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا