ﻻ يوجد ملخص باللغة العربية
Fragmentation is the dominant mechanism for hadron production with high transverse momentum. For spin-triplet S-wave heavy quarkonium production, contribution of gluon fragmenting to color-singlet channel has been numerically calculated since 1993. However, there is still no analytic expression available up to now because of its complexity. In this paper, we calculate both polarization-summed and polarized fragmentation functions of gluon fragmenting to a heavy quark-antiquark pair with quantum number $^3S_1^{[1]}$. Our calculations are performed in two different frameworks. One is the widely used nonrelativistic QCD factorization, and the other is the newly proposed soft gluon factorization. In either case, we calculate at both leading order and next-to-leading order in velocity expansion. All of our final results are presented in terms of compact analytic expressions.
We present the first calculation at next-to-leading order (NLO) in $alpha_s$ of a fragmentation function into quarkonium whose form at leading order is a nontrivial function of $z$, namely the fragmentation function for a gluon into a spin-singlet S-
The short-distance coefficients for the color-octet 3S1 term in the fragmentation function for a gluon to split into heavy quarkonium states is calculated to order alpha_s^2. The gauge-invariant definition of the fragmentation function by Collins and
We calculate the NLO corrections for the gluon fragmentation functions to a heavy quark-antiquark pair in ${^{1}hspace{-0.6mm}S_{0}^{[1]}}$ or ${^{1}hspace{-0.6mm}S_{0}^{[8]}}$ state within NRQCD factorization. We use integration-by-parts reduction t
In the paper, we calculate the fragmentation functions for a quark to fragment into a spin-singlet quarkonium, where the flavor of the initial quark is different from that of the constituent quark in the quarkonium. The ultraviolet divergences in the
In the paper, we calculate the fragmentation functions for $c to eta_c$ and $b to eta_b$ up to next-to-leading-order (NLO) QCD accuracy. The ultraviolet divergences in the real corrections are removed through operator renormalization under the modifi