Tycho-Gaia Astrometric Solution (TGAS) parallax data are used to determine absolute magnitudes $M_V$ for 318 W~UMa-type (EW) contact binary stars. A very steep (slope $simeq -9$), single-parameter ($log{P}$), linear calibration can be used to predict $M_V$ to about 0.1 -- 0.3 mag over the whole range of accessible orbital period, $0.22!<!P!<!0.88$ days. A similar calibration for the most common systems with $0.275!<!P!<!0.575$ days predicts $M_V$ values to about 0.06 -- 0.16 mag. For orbital period values both shorter and longer than the central range, the period dependence is respectively steeper and shallower, i.e. the binaries are fainter in $M_V$ than predicted by the whole-range, linear law. The steepness of the relation for short-period systems implies important consequences for the detectability of the faintest binaries defining the short-period cut-off of the period distribution. Although the scatter around the linear $log{P}$-fit is fairly large (0.2 -- 0.4 mag), the current data do not support the inclusion of a $B!-!V$ color term in the calibration.