ﻻ يوجد ملخص باللغة العربية
Identity-homotopic self-homeomorphisms of a space of non-periodic 1-dimensional tiling are generalizations of orientation-preserving self-homeomorphisms of circles. We define the analogue of rotation numbers for such maps. In constrast to the classical situation, additional assumptions are required to make rotation numbers globally well-defined and independent of initial conditions. We prove that these conditions are sufficient, and provide counterexamples when these conditions are not met.
If phi is a Pisot substitution of degree d, then the inflation and substitution homeomorphism Phi on the tiling space T_Phi factors via geometric realization onto a d-dimensional solenoid. Under this realization, the collection of Phi-periodic asympt
Anderson and Putnam showed that the cohomology of a substitution tiling space may be computed by collaring tiles to obtain a substitution which forces its border. One can then represent the tiling space as an inverse limit of an inflation and substit
We prove that if a primitive and non-periodic substitution is injective on initial letters, constant on final letters, and has Pisot inflation, then the R-action on the corresponding tiling space has pure discrete spectrum. As a consequence, all beta
We study the homomorphism induced on cohomology by the maximal equicontinuous factor map of a tiling space. We will see that this map is injective in degree one and has torsion free cokernel. We show by example, however, that the cohomology of the ma
We consider the structure of Pisot substitution tiling spaces, in particular, the structure of those spaces for which the translation action does not have pure discrete spectrum. Such a space is always a measurable m-to-one cover of an action by tran