ﻻ يوجد ملخص باللغة العربية
Breaking the symmetry in a coupled wave system can result in unusual amplification behavior. In the case of difference parametric amplification the resonant pump frequency is equal to the difference, instead of the sum, frequency of the normal modes. We show that sign reversal in the symmetry relation of parametric coupling give rise to difference parametric amplification as a dual of optical parametric amplification. For optical systems, our result can potentially be used for efficient XUV amplification.
A recent article [W.C.W. Huang and H. Batelaan, arXiv:1708.0057v1] analysed the dualism between optical and difference parametric amplification, performing a classical analysis of a system where two electromagnetic fields are produced by another of a
Phase-sensitive optical parametric amplification of squeezed states helps to overcome detection loss and noise and thus increase the robustness of sub-shot-noise sensing. Because such techniques, e.g., imaging and spectroscopy, operate with multimode
The study of optical parametric amplifiers (OPAs) has been successful in describing and creating nonclassical light for use in fields such as quantum metrology and quantum lithography [Agarwal, et al., J. Opt. Soc. Am. B, 24, 2 (2007)]. In this paper
High precision interferometers are the building blocks of precision metrology and the ultimate interferometric sensitivity is limited by the quantum noise. Here we propose and experimentally demonstrate a compact quantum interferometer involving two
The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition i