ترغب بنشر مسار تعليمي؟ اضغط هنا

On a robust risk measurement approach for capital determination errors minimization

64   0   0.0 ( 0 )
 نشر من قبل Marcelo Righi
 تاريخ النشر 2017
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a robust risk measurement approach that minimizes the expectation of overestimation plus underestimation costs. We consider uncertainty by taking the supremum over a collection of probability measures, relating our approach to dual sets in the representation of coherent risk measures. We provide results that guarantee the existence of a solution and explore the properties of minimizer and minimum as risk and deviation measures, respectively. An empirical illustration is carried out to demonstrate the use of our approach in capital determination.



قيم البحث

اقرأ أيضاً

The study deals with the assessment of risk measures for Health Plans in order to assess the Solvency Capital Requirement. For the estimation of the individual health care expenditure for several episode types, we suggest an original approach based o n a three-part regression model. We propose three Generalized Linear Models (GLM) to assess claim counts, the allocation of each claim to a specific episode and the severity average expenditures respectively. One of the main practical advantages of our proposal is the reduction of the regression models compared to a traditional approach, where several two-part models for each episode types are requested. As most health plans require co-payments or co-insurance, considering at this stage the non-linearity condition of the reimbursement function, we adopt a Montecarlo simulation to assess the health plan costs. The simulation approach provides the probability distribution of the Net Asset Value of the Health Plan and the estimate of several risk measures.
In this paper we develop a novel methodology for estimation of risk capital allocation. The methodology is rooted in the theory of risk measures. We work within a general, but tractable class of law-invariant coherent risk measures, with a particular focus on expected shortfall. We introduce the concept of fair capital allocations and provide explicit formulae for fair capital allocations in case when the constituents of the risky portfolio are jointly normally distributed. The main focus of the paper is on the problem of approximating fair portfolio allocations in the case of not fully known law of the portfolio constituents. We define and study the concepts of fair allocation estimators and asymptotically fair allocation estimators. A substantial part of our study is devoted to the problem of estimating fair risk allocations for expected shortfall. We study this problem under normality as well as in a nonparametric setup. We derive several estimators, and prove their fairness and/or asymptotic fairness. Last, but not least, we propose two backtesting methodologies that are oriented at assessing the performance of the allocation estimation procedure. The paper closes with a substantial numerical study of the subject.
Capital allocation principles are used in various contexts in which a risk capital or a cost of an aggregate position has to be allocated among its constituent parts. We study capital allocation principles in a performance measurement framework. We i ntroduce the notation of suitability of allocations for performance measurement and show under different assumptions on the involved reward and risk measures that there exist suitable allocation methods. The existence of certain suitable allocation principles generally is given under rather strict assumptions on the underlying risk measure. Therefore we show, with a reformulated definition of suitability and in a slightly modified setting, that there is a known suitable allocation principle that does not require any properties of the underlying risk measure. Additionally we extend a previous characterization result from the literature from a mean-risk to a reward-risk setting. Formulations of this theory are also possible in a game theoretic setting.
Systemic risk arises as a multi-layer network phenomenon. Layers represent direct financial exposures of various types, including interbank liabilities, derivative- or foreign exchange exposures. Another network layer of systemic risk emerges through common asset holdings of financial institutions. Strongly overlapping portfolios lead to similar exposures that are caused by price movements of the underlying financial assets. Based on the knowledge of portfolio holdings of financial agents we quantify systemic risk of overlapping portfolios. We present an optimization procedure, where we minimize the systemic risk in a given financial market by optimally rearranging overlapping portfolio networks, under the constraints that the expected returns and risks of the individual portfolios are unchanged. We explicitly demonstrate the power of the method on the overlapping portfolio network of sovereign exposure between major European banks by using data from the European Banking Authority stress test of 2016. We show that systemic-risk-efficient allocations are accessible by the optimization. In the case of sovereign exposure, systemic risk can be reduced by more than a factor of two, with- out any detrimental effects for the individual banks. These results are confirmed by a simple simulation of fire sales in the government bond market. In particular we show that the contagion probability is reduced dramatically in the optimized network.
We present an approach to market-consistent multi-period valuation of insurance liability cash flows based on a two-stage valuation procedure. First, a portfolio of traded financial instrument aimed at replicating the liability cash flow is fixed. Th en the residual cash flow is managed by repeated one-period replication using only cash funds. The latter part takes capital requirements and costs into account, as well as limited liability and risk averseness of capital providers. The cost-of-capital margin is the value of the residual cash flow. We set up a general framework for the cost-of-capital margin and relate it to dynamic risk measurement. Moreover, we present explicit formulas and properties of the cost-of-capital margin under further assumptions on the model for the liability cash flow and on the conditional risk measures and utility functions. Finally, we highlight computational aspects of the cost-of-capital margin, and related quantities, in terms of an example from life insurance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا