ترغب بنشر مسار تعليمي؟ اضغط هنا

On Some Exponential Sums Related to the Coulters Polynomial

61   0   0.0 ( 0 )
 نشر من قبل Minglong Qi
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the formulas of some exponential sums over finite field, related to the Coulters polynomial, are settled based on the Coulters theorems on Weil sums, which may have potential application in the construction of linear codes with few weights.



قيم البحث

اقرأ أيضاً

In this paper we prove some exponential inequalities involving the sinc function. We analyze and prove inequalities with constant exponents as well as inequalities with certain polynomial exponents. Also, we establish intervals in which these inequalities hold.
65 - Peigen Li 2021
In the present article, we use Robbas method to give an estimation of the Newton polygon for the L function on torus.
198 - Jian Zhou 2021
Motivated by fractional quantum Hall effects, we introduce a universal space of statistics interpolating Bose-Einstein statistics and Fermi-Dirac statistics. We connect the interpolating statistics to umbral calculus and use it as a bridge to study t he interpolation statistics by the principle maximum entropy by deformed entropy functions. On the one hand this connection makes it possible to relate fractional quantum Hall effects to many different mathematical objects, including formal group laws, complex bordism theory, complex genera, operads, counting trees, spectral curves in Eynard-Orantin topological recursions, etc. On the other hand, this also suggests to reexamine umbral calculus from the point of view of quantum mechanics and statistical mechanics.
241 - Lei Fu , Daqing Wan 2020
We deduce Katzs theorems for $(A,B)$-exponential sums over finite fields using $ell$-adic cohomology and a theorem of Denef-Loeser, removing the hypothesis that $A+B$ is relatively prime to the characteristic $p$. In some degenerate cases, the Betti number estimate is improved using toric decomposition and Adolphson-Sperbers bound for the degree of $L$-functions. Applying the facial decomposition theorem in cite{W1}, we prove that the universal family of $(A,B)$-polynomials is generically ordinary for its $L$-function when $p$ is in certain arithmetic progression.
We describe an algorithm that computes possible corners of hypothetical counterexamples to the Jacobian Conjecture up to a given bound. Using this algorithm we compute the possible families corresponding to $gcd(deg(P),deg(Q))le 35$, and all the pair s $(deg(P),deg(Q))$ with $max(deg(P),deg(Q))le 150$ for any hypothetical counterexample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا