ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Graph Persistence

48   0   0.0 ( 0 )
 نشر من قبل Massimo Ferri
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphs are a basic tool for the representation of modern data. The richness of the topological information contained in a graph goes far beyond its mere interpretation as a one-dimensional simplicial complex. We show how topological constructions can be used to gain information otherwise concealed by the low-dimensional nature of graphs. We do that by extending previous work of other researchers in homological persistence, by proposing novel graph-theoretical constructions. Beyond cliques, we use independent sets, neighborhoods, enclaveless sets and a Ramsey-inspired extended persistence.



قيم البحث

اقرأ أيضاً

Persistent homology enables fast and computable comparison of topological objects. However, it is naturally limited to the analysis of topological spaces. We extend the theory of persistence, by guaranteeing robustness and computability to significan t data types as simple graphs and quivers. We focus on categorical persistence functions that allow us to study in full generality strong kinds of connectedness such as clique communities, $k$-vertex and $k$-edge connectedness directly on simple graphs and monic coherent categories.
A k-valuation is a special type of edge k-colouring of a medial graph. Various graph polynomials, such as the Tutte, Penrose, Bollobas-Riordan, and transition polynomials, admit combinatorial interpretations and evaluations as weighted counts of k-va luations. In this paper, we consider a multivariate generating function of k-valuations. We show that this is a polynomial in k and hence defines a graph polynomial. We then show that the resulting polynomial has several desirable properties, including a recursive deletion-contraction-type definition, and specialises to the graph polynomials mentioned above. It also offers an alternative extension of the Penrose polynomial from plane graphs to graphs in other surfaces.
The $2$-cell embeddings of graphs on closed surfaces have been widely studied. It is well known that ($2$-cell) embedding a given graph $G$ on a closed orientable surface is equivalent to cyclically ordering the edges incident to each vertex of $G$. In this paper, we study the following problem: given a genus $g$ embedding $mathbb{E}$ of the graph $G$, if we randomly rearrange the edges around a vertex, i.e., re-embedding, what is the probability of the resulting embedding $mathbb{E}$ having genus $g+Delta g$? We give a formula to compute this probability. Meanwhile, some other known and unknown results are also obtained. For example, we show that the probability of preserving the genus is at least $frac{2}{deg(v)+2}$ for re-embedding any vertex $v$ of degree $deg(v)$ in a one-face embedding; and we obtain a necessary condition for a given embedding of $G$ to be an embedding with the minimum genus.
Algorithms for persistent homology and zigzag persistent homology are well-studied for persistence modules where homomorphisms are induced by inclusion maps. In this paper, we propose a practical algorithm for computing persistence under $mathbb{Z}_2 $ coefficients for a sequence of general simplicial maps and show how these maps arise naturally in some applications of topological data analysis. First, we observe that it is not hard to simulate simplicial maps by inclusion maps but not necessarily in a monotone direction. This, combined with the known algorithms for zigzag persistence, provides an algorithm for computing the persistence induced by simplicial maps. Our main result is that the above simple minded approach can be improved for a sequence of simplicial maps given in a monotone direction. A simplicial map can be decomposed into a set of elementary inclusions and vertex collapses--two atomic operations that can be supported efficiently with the notion of simplex annotations for computing persistent homology. A consistent annotation through these atomic operations implies the maintenance of a consistent cohomology basis, hence a homology basis by duality. While the idea of maintaining a cohomology basis through an inclusion is not new, maintaining them through a vertex collapse is new, which constitutes an important atomic operation for simulating simplicial maps. Annotations support the vertex collapse in addition to the usual inclusion quite naturally. Finally, we exhibit an application of this new tool in which we approximate the persistence diagram of a filtration of Rips complexes where vertex collapses are used to tame the blow-up in size.
The theory of persistence modules is an emerging field of algebraic topology which originated in topological data analysis. In these notes we provide a concise introduction into this field and give an account on some of its interactions with geometry and analysis. In particular, we present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, we discuss topological function theory which provides a new insight on oscillation of functions. The material should be accessible to readers with a basic background in algebraic and differential topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا