ﻻ يوجد ملخص باللغة العربية
Graphs are a basic tool for the representation of modern data. The richness of the topological information contained in a graph goes far beyond its mere interpretation as a one-dimensional simplicial complex. We show how topological constructions can be used to gain information otherwise concealed by the low-dimensional nature of graphs. We do that by extending previous work of other researchers in homological persistence, by proposing novel graph-theoretical constructions. Beyond cliques, we use independent sets, neighborhoods, enclaveless sets and a Ramsey-inspired extended persistence.
Persistent homology enables fast and computable comparison of topological objects. However, it is naturally limited to the analysis of topological spaces. We extend the theory of persistence, by guaranteeing robustness and computability to significan
A k-valuation is a special type of edge k-colouring of a medial graph. Various graph polynomials, such as the Tutte, Penrose, Bollobas-Riordan, and transition polynomials, admit combinatorial interpretations and evaluations as weighted counts of k-va
The $2$-cell embeddings of graphs on closed surfaces have been widely studied. It is well known that ($2$-cell) embedding a given graph $G$ on a closed orientable surface is equivalent to cyclically ordering the edges incident to each vertex of $G$.
Algorithms for persistent homology and zigzag persistent homology are well-studied for persistence modules where homomorphisms are induced by inclusion maps. In this paper, we propose a practical algorithm for computing persistence under $mathbb{Z}_2
The theory of persistence modules is an emerging field of algebraic topology which originated in topological data analysis. In these notes we provide a concise introduction into this field and give an account on some of its interactions with geometry