ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Coherent Light Amplification with Double Electromagnetically Induced Transparency Coherences

459   0   0.0 ( 0 )
 نشر من قبل Junxiang Zhang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally demonstrate coherent amplification of probe field in a tripod-type atoms driven by strong coupling, signal and weak probe fields. We suppress linear and nonlinear atomic absorptions for resonant and near resonant probe via double electromagnetically induced transparency (DEIT). Combining these advantages of suppressed absorption along with temperature- or atomic-density-controlled transfer of population(ToP) between hyperfine ground states, we can induce near-resonant amplification of probe through stimulated Raman scattering(SRS) pumped by low-intensity signal field. The increased population difference of initial and final states of SRS due to increased ToP rate, together with reduced absorption at the second EIT window in an optically thick Cesium vapor, gives rise to highly effective coherent amplification.



قيم البحث

اقرأ أيضاً

We show that an alkali atom with a tripod electronic structure can yield rich electromagnetically induced transparency phenomena even at room temperature. In particular we introduce double-double electromagnetically induced transparency wherein signa l and probe fields each have two transparency windows. Their group velocities can be matched in either the first or second pair of transparency windows. Moreover signal and probe fields can each experience coherent gain in the second transparency windows. We explain using a semi-classical-dressed-picture to connect the tripod electronic structure to a double-Lambda scheme.
We theoretically investigate a double-{Lambda} electromagnetically induced transparency (EIT) system. The property of the double-{Lambda} medium with a closed-loop configuration depends on the relative phase of the applied laser fields. This phase-de pendent mechanism differentiates the double-{Lambda} medium from the conventional Kerr-based nonlinear medium, e.g., EIT-based nonlinear medium discussed by Harris and Hau [Phys. Rev. Lett. 82, 4611 (1999)], which depends only on the intensities of the applied laser fields. Steady-state analytical solutions for the phase-dependent system are obtained by solving the Maxwell-Bloch equations. In addition, we discuss efficient all-optical phase modulation and coherent light amplification based on the proposed double-{Lambda} EIT scheme.
231 - G. W. Lin , Y. H. Qi , X. M. Lin 2013
We consider the dynamics of intracavity electromagnetically induced transparency (EIT) in an ensemble of strongly interacting Rydberg atoms. By combining the advantage of variable cavity lifetimes with intracavity EIT and strongly interacting Rydberg dark-state polaritons, we show that such intracavity EIT system could exhibit very strong photon blockade effect.
We report the observation of Electromagnetically Induced Transparency (EIT) of a mechanical field, where a superconducting artificial atom is coupled to a 1D-transmission line for surface acoustic waves. An electromagnetic microwave drive is used as the control field, rendering the superconducting transmon qubit transparent to the acoustic probe beam. The strong frequency dependence of the acoustic coupling enables EIT in a ladder configuration due to the suppressed relaxation of the upper level. Our results show that superconducting circuits can be engineered to interact with acoustic fields in parameter regimes not readily accessible to purely electromagnetic systems.
Vector magnetometry was studied using the electromagnetically induced transparency (EIT) with linear $perp$ linear ($lin perp lin$) polarization of the probe and the pump beams in $^{87}Rb$ - $D_2$ transition. The dependence of the EIT on the directi on of the quantization axis and the relative orientation of the polarization of the applied electric fields was studied experimentally. We have shown that from the relative strengths of the $sigma$ and $pi$ EIT peaks, the direction of the magnetic field can be found. Moreover from the relative separation between the $sigma$ and $pi$ EIT peaks, the strengths of the magnetic field can be calculated. We have also demonstrated that the EIT peak amplitudes show oscillatory behaviour depending upon the orientation of the laser polarization relative to the magnetic field direction. Using the positions of the maxima and minima, the direction of the magnetic field can be calculated. To understand the experimental observation, a theoretical study has been done numerically considering all the thirteen Zeeman sub-levels. Apart from the numerical model, a toy model has also been considered to obtain an analytical response of the medium considering the velocity distribution. The dependencies of the magnetic field direction and the polarization direction of the electric fields have been explicitly derived in the analytical model. Further the direction of the magnetic field is calculated using the analytical solution. This study can be helpful in order to make an EIT based atomic vector magnetometer at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا