ﻻ يوجد ملخص باللغة العربية
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22 deg. to 140 deg. is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5 deg. (10 deg.) to 22 deg. in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.
The key component of the future PANDA experiment at FAIR is a fixed-target detector for collisions of antiprotons with a proton target up to a beam momentum of 15 GeV/c and is designed to address a large number of open questions in the hadron physics
The PANDA experiment is one of the four large experiments being built at FAIR in Darmstadt. It will use a cooled antiproton beam on a fixed target within the momentum range of 1.5 to 15 GeV/c to address questions of strong QCD, where the coupling con
The PANDA experiment will use cooled antiproton beams with high intensity stored1 in the High Energy Storage Ring at FAIR. Reactions on a fixed target producing charmed hadrons will shed light on the strong QCD. Three ring imaging Cherenkov counters
The Barrel DIRC of the PANDA experiment at FAIR will cleanly separate pions from kaons for the physics program of PANDA. Innovative solutions for key components of the detector sitting in the strong magnetic field of the compact PANDA target spectrom
The innovative Barrel DIRC (Detection of Internally Reflected Cherenkov light) counter will provide hadronic particle identification (PID) in the central region of the PANDA experiment at the new Facility for Antiproton and Ion Research (FAIR), Darms