ﻻ يوجد ملخص باللغة العربية
We develop a model for the description of nonlinear pulse propagation in multimode optical fibers with a parabolic refractive index profile. It consists in a 1+1D generalized nonlinear Schrodinger equation with a periodic nonlinear coefficient, which can be solved in an extremely fast and efficient way. The model is able to quantitatively reproduce recently observed phenomena like geometric parametric instability and broadband dispersive wave emission. We envisage that our equation will represent a valuable tool for the study of spatiotemporal nonlinear dynamics in the growing field of multimode fiber optics.
Solitons are non-dispersing localized waves that occur in diverse physical settings. A variety of optical solitons have been observed, b
We develop the scheme of dispersion management (DM) for three-dimensional (3D) solitons in a multimode optical fiber. It is modeled by the parabolic confining potential acting in the transverse plane in combination with the cubic self-focusing. The D
Multimode fibres (MMFs) are attracting interest for complex spatiotemporal dynamics, and for ultrafast fibre sources, imaging and telecommunications. This new interest is based on three key properties: their high spatiotemporal complexity (informatio
We present a theoretical and numerical study of light propagation in graded-index (GRIN) multimode fibers where the core diameter has been periodically modulated along the propagation direction. The additional degree of freedom represented by the mod
Long-range speckle correlations play an essential role in wave transport through disordered media, but have rarely been studied in other complex systems. Here we discover spatio-temporal intensity correlations for an optical pulse propagating through