ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinetic cascade in solar-wind turbulence: 3D3V hybrid-kinetic simulations with electron inertia

137   0   0.0 ( 0 )
 نشر من قبل Silvio Sergio Cerri
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the nature of the turbulent fluctuations below the ion gyroradius in solar-wind turbulence is a great challenge. Recent studies have been mostly in favor of kinetic Alfven wave (KAW) type of fluctuations, but other kinds of fluctuations with characteristics typical of magnetosonic, whistler and ion Bernstein modes, could also play a role depending on the plasma parameters. Here we investigate the properties of the sub-proton-scale cascade with high-resolution hybrid-kinetic simulations of freely-decaying turbulence in 3D3V phase space, including electron inertia effects. Two proton plasma beta are explored: the intermediate $beta_p=1$ and low $beta_p=0.2$ regimes, both typically observed in solar wind and corona. The magnetic energy spectum exhibits $k_perp^{-8/3}$ and $k_|^{-7/2}$ power laws at $beta_p=1$, while they are slightly steeper at $beta_p=0.2$. Nevertheless, both regimes develop a spectral anisotropy consistent with $k_|sim k_perp^{2/3}$ at $k_perprho_p>1$, and pronounced small-scale intermittency. In this context, we find that the kinetic-scale cascade is dominated by KAW-like fluctuations at $beta_p=1$, whereas the low-$beta$ case presents a more complex scenario suggesting the simultaneous presence of different types of fluctuations. In both regimes, however, a non-negligible role of ion Bernstein type of fluctuations at the smallest scales seems to emerge.



قيم البحث

اقرأ أيضاً

A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfven wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at $betagtrsim1$ and by magnetosonic/whistler fluctuations at lower $beta$. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma $beta$, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.
A Hamiltonian two-field gyrofluid model for kinetic Alfven waves (KAWs) in a magnetized electron-proton plasma, retaining ion finite-Larmor-radius corrections and parallel magnetic field fluctuations, is used to study the inverse cascades that develo p when turbulence is randomly driven at sub-ion scales. In the directions perpendicular to the ambient field, the dynamics of the cascade turns out to be nonlocal and the ratio $chi_f$ of the wave period to the characteristic nonlinear time at the driving scale affect some of its properties. For example, at small values of $chi_f$, parametric decay instability of the modes driven by the forcing can develop, enhancing for a while inverse transfers. The balanced state, obtained at early time when the two counter-propagating waves are equally driven, also becomes unstable at small $chi_f$, leading to an inverse cascade. For $beta_e$ smaller than a few units, the cascade slows down when reaching the low-dispersion spectral range. For higher $beta_e$, the ratio of the KAW to the Alfven frequencies displays a local minimum. At the corresponding transverse wavenumber, a condensate is formed, and the cascade towards larger scales is then inhibited. Depending on the parameters, a parallel inverse cascade can develop, enhancing the elongation of the ion-scale magnetic vortices that generically form.
Kinetic-range turbulence in magnetized plasmas and, in particular, in the context of solar-wind turbulence has been extensively investigated over the past decades via numerical simulations. Among others, one of the widely adopted reduced plasma model is the so-called hybrid-kinetic model, where the ions are fully kinetic and the electrons are treated as a neutralizing (inertial or massless) fluid. Within the same model, different numerical methods and/or approaches to turbulence development have been employed. In the present work, we present a comparison between two-dimensional hybrid-kinetic simulations of plasma turbulence obtained with two complementary approaches spanning about two decades in wavenumber - from MHD inertial range to scales well below the ion gyroradius - with a state-of-the-art accuracy. One approach employs hybrid particle-in-cell (HPIC) simulations of freely-decaying Alfvenic turbulence, whereas the other consists of Eulerian hybrid Vlasov-Maxwell (HVM) simulations of turbulence continuously driven with partially-compressible large-scale fluctuations. Despite the completely different initialization and injection/drive at large scales, the same properties of turbulent fluctuations at $k_perprho_igtrsim1$ are observed. The system indeed self-consistently reprocesses the turbulent fluctuations while they are cascading towards smaller and smaller scales, in a way which actually depends on the plasma beta parameter. Small-scale turbulence has been found to be mainly populated by kinetic Alfven wave (KAW) fluctuations for $betageq1$, whereas KAW fluctuations are only sub-dominant for low-$beta$.
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfv{e}n waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of $k_{perp}^{-1.3}$. The kinetic code shows a spectral slope of $k_{perp}^{-1.5}$ for smaller simulation domain, and $k_{perp}^{-1.3}$ for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.
The mechanism of heating for hot, dilute, and turbulent plasmas represents a long-standing problem in space physics, whose implications concern both near-Earth environments and astrophysical systems. In order to explore the possible role of interpart icle collisions, simulations of plasma turbulence -- in both collisionless and weakly collisional regimes -- have been compared by adopting Eulerian Hybrid Boltzmann-Maxwell simulations, being proton-proton collisions explicitly introduced through the nonlinear Dougherty operator. Although collisions do not significantly influence the statistical characteristics of the turbulence, they dissipate nonthermal features in the proton distribution function and suppress the enstrophy/entropy cascade in the velocity space, damping the spectral transfer toward large Hermite modes. This enstrophy dissipation is particularly effective in regions where the plasma distribution function is strongly distorted, suggesting that collisional effects are enhanced by fine velocity-space structures. A qualitative connection between the turbulent energy cascade in fluids and the enstrophy cascade in plasmas has been established, opening a new path to the understanding of astrophysical plasma turbulence
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا