Edge-coloring linear hypergraphs with medium-sized edges


الملخص بالإنكليزية

Motivated by the ErdH{o}s-Faber-Lov{a}sz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper-edge sizes are bounded between $i$ and $C_{i,epsilon} sqrt{n}$ inclusive, then there is a list edge coloring using $(1 + epsilon) frac{n}{i - 1}$ colors. The dependence on $n$ in the upper bound is optimal (up to the value of $C_{i,epsilon}$).

تحميل البحث