ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge-coloring linear hypergraphs with medium-sized edges

83   0   0.0 ( 0 )
 نشر من قبل David Harris
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the ErdH{o}s-Faber-Lov{a}sz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper-edge sizes are bounded between $i$ and $C_{i,epsilon} sqrt{n}$ inclusive, then there is a list edge coloring using $(1 + epsilon) frac{n}{i - 1}$ colors. The dependence on $n$ in the upper bound is optimal (up to the value of $C_{i,epsilon}$).



قيم البحث

اقرأ أيضاً

145 - Vance Faber 2016
Motivated by the Erdos-Faber Lovasz conjecture (EFL) for hypergraphs, we explore relationships between several conjectures on the edge coloring of linear hypergraphs. In particular, we are able to increase the class of hypergraphs for which EFL is true.
For $ngeq 3$, let $r=r(n)geq 3$ be an integer. A hypergraph is $r$-uniform if each edge is a set of $r$ vertices, and is said to be linear if two edges intersect in at most one vertex. In this paper, the number of linear $r$-uniform hypergraphs on $n toinfty$ vertices is determined asymptotically when the number of edges is $m(n)=o(r^{-3}n^{ frac32})$. As one application, we find the probability of linearity for the independent-edge model of random $r$-uniform hypergraph when the expected number of edges is $o(r^{-3}n^{ frac32})$. We also find the probability that a random $r$-uniform linear hypergraph with a given number of edges contains a given subhypergraph.
144 - Vance Faber 2017
Motivated by the ErdH{o}s-Faber-Lovasz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We discuss several conjectures for list edge coloring linear hypergraphs that generalize both EFL and Vizings theorem f or graphs. For example, we conjecture that in a linear hypergraph of rank 3, the list edge chromatic number is at most 2 times the maximum degree plus 1. We show that for sufficiently large fixed rank and sufficiently large degree, the conjectures are true.
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ with $Delta(G)>|V(G)|/3$ has chromatic index $Delta(G)$ i f and only if $G$ contains no overfull subgraph. The 1-factorization conjecture is a special case of this overfull conjecture, which states that for even $n$, every regular $n$-vertex graph with degree at least about $n/2$ has a 1-factorization and was confirmed for large graphs in 2014. Supporting the overfull conjecture as well as generalizing the 1-factorization conjecture in an asymptotic way, in this paper, we show that for any given $0<varepsilon <1$, there exists a positive integer $n_0$ such that the following statement holds: if $G$ is a graph on $2nge n_0$ vertices with minimum degree at least $(1+varepsilon)n$, then $G$ has chromatic index $Delta(G)$ if and only if $G$ contains no overfull subgraph.
An oriented k-uniform hypergraph (a family of ordered k-sets) has the ordering property (or Property O) if for every linear order of the vertex set, there is some edge oriented consistently with the linear order. We find bounds on the minimum number of edges in a hypergraph with Property O.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا