ﻻ يوجد ملخص باللغة العربية
Motivated by the ErdH{o}s-Faber-Lov{a}sz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper-edge sizes are bounded between $i$ and $C_{i,epsilon} sqrt{n}$ inclusive, then there is a list edge coloring using $(1 + epsilon) frac{n}{i - 1}$ colors. The dependence on $n$ in the upper bound is optimal (up to the value of $C_{i,epsilon}$).
Motivated by the Erdos-Faber Lovasz conjecture (EFL) for hypergraphs, we explore relationships between several conjectures on the edge coloring of linear hypergraphs. In particular, we are able to increase the class of hypergraphs for which EFL is true.
For $ngeq 3$, let $r=r(n)geq 3$ be an integer. A hypergraph is $r$-uniform if each edge is a set of $r$ vertices, and is said to be linear if two edges intersect in at most one vertex. In this paper, the number of linear $r$-uniform hypergraphs on $n
Motivated by the ErdH{o}s-Faber-Lovasz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We discuss several conjectures for list edge coloring linear hypergraphs that generalize both EFL and Vizings theorem f
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ with $Delta(G)>|V(G)|/3$ has chromatic index $Delta(G)$ i
An oriented k-uniform hypergraph (a family of ordered k-sets) has the ordering property (or Property O) if for every linear order of the vertex set, there is some edge oriented consistently with the linear order. We find bounds on the minimum number of edges in a hypergraph with Property O.