ترغب بنشر مسار تعليمي؟ اضغط هنا

Pigmento: Pigment-Based Image Analysis and Editing

85   0   0.0 ( 0 )
 نشر من قبل Jianchao Tan
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.



قيم البحث

اقرأ أيضاً

We present a palette-based framework for color composition for visual applications. Color composition is a critical aspect of visual applications in art, design, and visualization. The color wheel is often used to explain pleasing color combinations in geometric terms, and, in digital design, to provide a user interface to visualize and manipulate colors. We abstract relationships between palette colors as a compact set of axes describing harmonic templates over perceptually uniform color wheels. Our framework provides a basis for a variety of color-aware image operations, such as color harmonization and color transfer, and can be applied to videos. To enable our approach, we introduce an extremely scalable and efficient yet simple palette-based image decomposition algorithm. Our approach is based on the geometry of images in RGBXY-space. This new geometric approach is orders of magnitude more efficient than previous work and requires no numerical optimization. We demonstrate a real-time layer decomposition tool. After preprocessing, our algorithm can decompose 6 MP images into layers in 20 milliseconds. We also conducted three large-scale, wide-ranging perceptual studies on the perception of harmonic colors and harmonization algorithms.
Traditional cinematography has relied for over a century on a well-established set of editing rules, called continuity editing, to create a sense of situational continuity. Despite massive changes in visual content across cuts, viewers in general exp erience no trouble perceiving the discontinuous flow of information as a coherent set of events. However, Virtual Reality (VR) movies are intrinsically different from traditional movies in that the viewer controls the camera orientation at all times. As a consequence, common editing techniques that rely on camera orientations, zooms, etc., cannot be used. In this paper we investigate key relevant questions to understand how well traditional movie editing carries over to VR. To do so, we rely on recent cognition studies and the event segmentation theory, which states that our brains segment continuous actions into a series of discrete, meaningful events. We first replicate one of these studies to assess whether the predictions of such theory can be applied to VR. We next gather gaze data from viewers watching VR videos containing different edits with varying parameters, and provide the first systematic analysis of viewers behavior and the perception of continuity in VR. From this analysis we make a series of relevant findings; for instance, our data suggests that predictions from the cognitive event segmentation theory are useful guides for VR editing; that different types of edits are equally well understood in terms of continuity; and that spatial misalignments between regions of interest at the edit boundaries favor a more exploratory behavior even after viewers have fixated on a new region of interest. In addition, we propose a number of metrics to describe viewers attentional behavior in VR. We believe the insights derived from our work can be useful as guidelines for VR content creation.
BRDF models are ubiquitous tools for the representation of material appearance. However, there is now an astonishingly large number of different models in practical use. Both a lack of BRDF model standardisation across implementations found in differ ent renderers, as well as the often semantically different capabilities of various models, have grown to be a major hindrance to the interchange of production assets between different rendering systems. Current attempts to solve this problem rely on manually finding visual similarities between models, or mathematical ones between their functional shapes, which requires access to the shader implementation, usually unavailable in commercial renderers. We present a method for automatic translation of material appearance between different BRDF models, which uses an image-based metric for appearance comparison, and that delegates the interaction with the model to the renderer. We analyse the performance of the method, both with respect to robustness and visual differences of the fits for multiple combinations of BRDF models. While it is effective for individual BRDFs, the computational cost does not scale well for spatially-varying BRDFs. Therefore, we further present a parametric regression scheme that approximates the shape of the transformation function and generates a reduced representation which evaluates instantly and without further interaction with the renderer. We present respective visual comparisons of the remapped SVBRDF models for commonly used renderers and shading models, and show that our approach is able to extrapolate transformed BRDF parameters better than other complex regression schemes.
Image metrics predict the perceived per-pixel difference between a reference image and its degraded (e. g., re-rendered) version. In several important applications, the reference image is not available and image metrics cannot be applied. We devise a neural network architecture and training procedure that allows predicting the MSE, SSIM or VGG16 image difference from the distorted image alone while the reference is not observed. This is enabled by two insights: The first is to inject sufficiently many un-distorted natural image patches, which can be found in arbitrary amounts and are known to have no perceivable difference to themselves. This avoids false positives. The second is to balance the learning, where it is carefully made sure that all image errors are equally likely, avoiding false negatives. Surprisingly, we observe, that the resulting no-reference metric, subjectively, can even perform better than the reference-based one, as it had to become robust against mis-alignments. We evaluate the effectiveness of our approach in an image-based rendering context, both quantitatively and qualitatively. Finally, we demonstrate two applications which reduce light field capture time and provide guidance for interactive depth adjustment.
The Japanese comic format known as Manga is popular all over the world. It is traditionally produced in black and white, and colorization is time consuming and costly. Automatic colorization methods generally rely on greyscale values, which are not p resent in manga. Furthermore, due to copyright protection, colorized manga available for training is scarce. We propose a manga colorization method based on conditional Generative Adversarial Networks (cGAN). Unlike previous cGAN approaches that use many hundreds or thousands of training images, our method requires only a single colorized reference image for training, avoiding the need of a large dataset. Colorizing manga using cGANs can produce blurry results with artifacts, and the resolution is limited. We therefore also propose a method of segmentation and color-correction to mitigate these issues. The final results are sharp, clear, and in high resolution, and stay true to the characters original color scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا