ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dust Twin of Cas A: Cool Dust and 21-micron Silicate Dust Feature in the Supernova Remnant G54.1+0.3

61   0   0.0 ( 0 )
 نشر من قبل Jeonghee Rho
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Rho




اسأل ChatGPT حول البحث

We present infrared (IR) and submillimeter observations of the Crab-like supernova remnant (SNR) G54.1+0.3 including 350 micron (SHARC-II), 870 micron (LABOCA), 70, 100, 160, 250, 350, 500 micron (Herschel) and 3-40 micron (Spitzer). We detect dust features at 9, 11 and 21 micron and a long wavelength continuum dust component. The 21 micron dust coincides with [Ar II] ejecta emission, and the feature is remarkably similar to that in Cas A. The IRAC 8 micron image including Ar ejecta is distributed in a shell-like morphology which is coincident with dust features, suggesting that dust has formed in the ejecta. We create a cold dust map that shows excess emission in the northwestern shell. We fit the spectral energy distribution of the SNR using the continuous distributions of ellipsoidal (CDE) grain model of pre-solar grain SiO2 that reproduces the 21 and 9 micron dust features and discuss grains of SiC and PAH that may be responsible for the 10-13 micron dust features. To reproduce the long-wavelength continuum, we explore models consisting of different grains including Mg2SiO4, MgSiO3, Al2O3, FeS, carbon, and Fe3O4. We tested a model with a temperature-dependent silicate absorption coefficient. We detect cold dust (27-44 K) in the remnant, making this the fourth such SNR with freshly-formed dust. The total dust mass in the SNR ranges from 0.08-0.9 Msun depending on the grain composition, which is comparable to predicted masses from theoretical models. Our estimated dust masses are consistent with the idea that SNe are a significant source of dust in the early Universe.



قيم البحث

اقرأ أيضاً

While theoretical dust condensation models predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present the analysis of Spitzer Space Telescope, Herschel Space Observatory, Stratospheric Observatory for Infrared Astronomy (SOFIA), and AKARI observations of the infrared (IR) shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 $mu$m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, which exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed IR continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The smallest mass of SN-formed dust required by our models is 1.1 $pm$ 0.8 $rm M_{odot}$. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16$-$27 $rm M_{odot}$ and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN and sheds light on the properties of pristine SN-condensed dust.
We present the results of extinction measurements toward the main ejecta shell of the Cassiopeia A supernova (SN) remnant using the flux ratios between the two near-infrared (NIR) [Fe II] lines at 1.26 and 1.64 $mu {rm m}$. We find a clear correlatio n between the NIR extinction ($E(J-H)$) and the radial velocity of ejecta knots, showing that redshifted knots are systematically more obscured than blueshifted ones. This internal self-extinction strongly indicates that a large amount of SN dust resides inside and around the main ejecta shell. At one location in the southern part of the shell, we measure $E(J-H)$ by the SN dust of 0.23$pm$0.05 mag. By analyzing the spectral energy distribution of thermal dust emission at that location, we show that there are warm ($sim$100 K) and cool ($sim$40 K) SN dust components and that the latter is responsible for the observed $E(J-H)$. We investigate the possible grain species and size of each component and find that the warm SN dust needs to be silicate grains such as MgSiO$_{3}$, Mg$_{2}$SiO$_{4}$, and SiO$_{2}$, whereas the cool dust could be either small ($leq$0.01 $mu {rm m}$) Fe or large ($geq$0.1 $mu {rm m}$) Si grains. We suggest that the warm and cool dust components in Cassiopeia A represent grain species produced in diffuse SN ejecta and in dense ejecta clumps, respectively.
We present a three dimensional (3D) extinction analysis in the region toward the supernova remnant (SNR) S147 (G180.0-1.7) using multi-band photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC), 2M ASS and WISE. We isolate a previously unrecognised dust structure likely to be associated with SNR S147. The structure, which we term as S147 dust cloud, is estimated to have a distance $d$ = 1.22 $pm$ 0.21 kpc, consistent with the conjecture that S147 is associated with pulsar PSR J0538 + 2817. The cloud includes several dense clumps of relatively high extinction that locate on the radio shell of S147 and coincide spatially with the CO and gamma-ray emission features. We conclude that the usage of CO measurements to trace the SNR associated MCs is unavoidably limited by the detection threshold, dust depletion, and the difficulty of distance estimates in the outer Galaxy. 3D dust extinction mapping may provide a better way to identify and study SNR-MC interactions.
196 - J. Rho , W. T. Reach , A. Tappe 2009
We present Spitzer IRS and IRAC observations of the young supernova remnant E0102 (SNR 1E0102.2-7219) in the Small Magellanic Cloud. The infrared spectra show strong ejecta lines of Ne and O, with the [Ne II] line at 12.8 microns having a large veloc ity dispersion of 2,000-4,500 km/s indicative of fast-moving ejecta. Unlike the young Galactic SNR Cas A, E0102 lacks emission from Ar and Fe. Diagnostics of the observed [Ne III] line pairs imply that [Ne III] emitting ejecta have a low temperature of 650 K, while [Ne V] line pairs imply that the infrared [Ne V] emitting ejecta have a high density of ~10^4/cm3. We have calculated radiative shock models for various velocity ranges including the effects of photoionization. The shock model indicates that the [Ne V] lines come mainly from the cooling zone, which is hot and dense, whereas [Ne II] and [Ne III] come mainly from the photoinization zone, which has a low temperature of 400-1000 K. We estimate an infrared emitting Ne ejecta mass of 0.04 Msun from the infrared observations, and discuss implications for the progenitor mass. The spectra also have a dust continuum feature peaking at 18 microns that coincides spatially with the ejecta, providing evidence that dust formed in the expanding ejecta. The 18-micron-peak dust feature is fitted by a mixture of MgSiO3 and Si dust grains, while the rest of the continuum requires either carbon or Al2O3 grains. We measure the total dust mass formed within the ejecta of E0102 to be ~0.014 Msun. The dust mass in E0102 is thus a factor of a few smaller than that in Cas A. The composition of the dust is also different, showing relatively less silicate and likely no Fe-bearing dust, as is suggested by the absence of Fe-emitting ejecta.
We present complicated dust structures within multiple regions of the candidate supernova remnant (SNR) the `Tornado (G357.7-0.1) using observations with Spitzer and Herschel. We use Point Process Mapping, PPMAP, to investigate the distribution of du st in the Tornado at a resolution of 8, compared to the native telescope beams of 5-36. We find complex dust structures at multiple temperatures within both the head and the tail of the Tornado, ranging from 15 to 60K. Cool dust in the head forms a shell, with some overlap with the radio emission, which envelopes warm dust at the X-ray peak. Akin to the terrestrial sandy whirlwinds known as `Dust Devils, we find a large mass of dust contained within the Tornado. We derive a total dust mass for the Tornado head of 16.7 solar masses, assuming a dust absorption coefficient of kappa_300 =0.56m^2 kg^1, which can be explained by interstellar material swept up by a SNR expanding in a dense region. The X-ray, infra-red, and radio emission from the Tornado head indicate that this is a SNR. The origin of the tail is more unclear, although we propose that there is an X-ray binary embedded in the SNR, the outflow from which drives into the SNR shell. This interaction forms the helical tail structure in a similar manner to that of the SNR W50 and microquasar SS433.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا