ﻻ يوجد ملخص باللغة العربية
Capacity is the eternal pursuit for communication systems due to the overwhelming demand of bandwidth hungry applications. As the backbone infrastructure of modern communication networks, the optical fiber transmission system undergoes a significant capacity growth over decades by exploiting available physical dimensions (time, frequency, quadrature, polarization and space) of the optical carrier for multiplexing. For each dimension, stringent orthogonality must be guaranteed for perfect separation of independent multiplexed signals. To catch up with the ever-increasing capacity requirement, it is therefore interesting and important to develop new multiplexing methodologies relaxing the orthogonal constraint thus achieving better spectral efficiency and more flexibility of frequency reuse. Inspired by the idea of non-orthogonal multiple access (NOMA) scheme, here we propose a digital domain power division multiplexed (PDM) transmission technology which is fully compatible with current dual polarization (DP) coherent optical communication system. The coherent optical orthogonal frequency division multiplexing (CO-OFDM) modulation has been employed owing to its great superiority on high spectral efficiency, flexible coding, ease of channel estimation and robustness against fiber dispersion. And a PDM-DP-CO-OFDM has been theoretically and experimentally demonstrated with 100Gb/s wavelength division multiplexing (WDM) transmission over 1440km standard single mode fibers (SSMFs). Two baseband quadrature phase shift keying (QPSK) OFDM signals are overlaid together with different power levels. After IQ modulation, polarization multiplexing and long distance fiber transmission, the PDM-DP-CO-OFDM signal has been successfully recovered in the typical polarization diversity coherent receiver by successive interference cancellation (SIC) algorithm.
We present a comparative study of the influence of dispersion induced phase noise for CO-OFDM systems using Tx channel multiplexing and Rx matched filter (analogue hardware based); and FFT multiplexing/IFFT demultiplexing techniques (software based).
Regular perturbation is applied to space-division multiplexing (SDM) on optical fibers and motivates a correlated rotation-and-additive noise (CRAN) model. For S spatial modes, or 2S complex-alphabet channels, the model has 4S(S+1) hidden independent
The fifth generation (5G) wireless standard will support several new use cases and 10 to 100 times the performance of fourth generation (4G) systems. Because of the diverse applications for 5G, flexible solutions which can address conflicting require
The Reconfigurable Intelligent Surface (RIS) constitutes one of the prominent technologies for the next 6-th Generation (6G) of wireless communications. It is envisioned to enhance signal coverage in cases where obstacles block the direct communicati
We present a study of the influence of dispersion induced phase noise for CO-OFDM systems using FFT multiplexing/IFFT demultiplexing techniques (software based). The software based system provides a method for a rigorous evaluation of the phase noise