ﻻ يوجد ملخص باللغة العربية
In this paper, we detail the scientific objectives and outline a strawman payload of the SOLAR sail Investigation of the Sun (SOLARIS). The science objectives are to study the 3D structure of the solar magnetic and velocity field, the variation of total solar irradiance with latitude, and the structure of the corona. We show how we can meet these science objective using solar-sail technologies currently under development. We provide a tentative mission profile considering several trade-off approaches. We also provide a tentative mass budget breakdown and a perspective for a programmatic implementation.
The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were f
Evolution of the 7Li abundance in the convection zone of the Sun during different stages of its life time is considered to explain its low photospheric value in comparison with that of the solar system meteorites. Lithium is intensively and transient
Solar analogs, broadly defined as stars similar to the Sun in mass or spectral type, provide a useful laboratory for exploring the range of Sun-like behaviors and exploring the physical mechanisms underlying some of the Suns most elusive processes li
We study flare processes in the lower solar atmosphere using observational data for a M1-class flare of June 12, 2014, obtained by New Solar Telescope (NST/BBSO) and Helioseismic Magnetic Imager (HMI/SDO). The main goal is to understand triggers and
We perform a quantitative analysis of the solar composition problem by using a statistical approach that allows us to combine the information provided by helioseimic and solar neutrino data in an effective way. We include in our analysis the heliosei