ﻻ يوجد ملخص باللغة العربية
Demand for lightweight, highly reflective and mechanically compliant mirrors for optics experiments has seen a significant surge. In this aspect, photonic crystal (PhC) membranes are ideal alternatives to conventional mirrors, as they provide high reflectivity with only a single suspended layer of patterned dielectric material. However, due to limitations in nanofabrication, these devices are usually not wider than 300 $mu$m. Here we experimentally demonstrate suspended PhC mirrors spanning areas up to 10$times$10 mm. We overcome limitations imposed by the size of the PhC and measure reflectivities greater than 90% on 56 nm thick mirrors at a wavelength of 1550 nm -- an unrivaled performance compared to PhC mirrors with micro scale diameters. These structures bridge the gap between nano scale technologies and macroscopic optical elements.
We present here an optomechanical system fabricated with novel stress management techniques that allow us to suspend an ultrathin defect-free silicon photonic-crystal membrane above a Silicon-on-Insulator (SOI) substrate with a gap that is tunable to
We investigate the nonlinear optical response of suspended 1D photonic crystal nanocavities fabricated on a silicon nitride chip. Strong thermo-optical nonlinearities are demonstrated for input powers as low as $2,mutext{W}$ and a self-sustained puls
The recent realizations of topological valley phase in photonic crystal, an analog of gapped valleytronic materials in electronic system, are limited to the valley Chern number of one. In this letter, we present a new type of valley phase that can ha
We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity phot
Hybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal me