ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Monopoles and Free Fractionally Charged States at Accelerators and in Cosmic Rays

230   0   0.0 ( 0 )
 نشر من قبل George Leontaris
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Unified theories of strong, weak and electromagnetic interactions which have electric charge quantization predict the existence of topologically stable magnetic monopoles. Intermediate scale monopoles are comparable with detection energies of cosmic ray monopoles at IceCube and other cosmic ray experiments. Magnetic monopoles in some models can be significantly lighter and carry two, three or possibly even higher quanta of the Dirac magnetic charge. They could be light enough for their effects to be detected at the LHC either directly or indirectly. An example based on a D-brane inspired $SU(3)_Ctimes SU(3)_Ltimes SU(3)_R$ (trinification) model with the monopole carrying three quanta of Dirac magnetic charge is presented. These theories also predict the existence of color singlet states with fractional electric charge which may be accessible at the LHC.



قيم البحث

اقرأ أيضاً

In this review, we discuss recent developments in both the theory and the experimental searches of magnetic monopoles in past, current and future colliders and in the Cosmos. The theoretical models include, apart from the standard Grand Unified Theor ies, extensions of the Standard Model that admit magnetic monopole solutions with finite energy and masses that can be as light as a few TeV. Specifically, we discuss, among other scenarios, modified Cho-Maison monopoles and magnetic monopoles in (string-inspired, higher derivative) Born-Infeld extensions of the hypercharge sector of the Standard Model. We also outline the conditions for which effective field theories describing the interaction of monopoles with photons are valid and can be used for result interpretation in monopole production at colliders. The experimental part of the review focuses on, past and present, cosmic and collider searches, including the latest bounds on monopole masses and magnetic charges by the ATLAS and MoEDAL experiments at the LHC, as well as prospects for future searches.
The MoEDAL experiment (Monopole and Exotics Detector at the LHC) is designed to directly search for magnetic monopoles and other highly ionising stable or metastable particles arising in various theoretical scenarios beyond the Standard Model. Its ph ysics goals --largely complementary to the multi-purpose LHC detectors ATLAS and CMS-- are accomplished by the deployment of plastic nuclear track detectors combined with trapping volumes for capturing charged highly ionising particles and TimePix pixel devices for monitoring. This paper focuses on the status of the detectors and the prospects for LHC Run II.
76 - Michael Dunia , Tim Evans , 2021
In this paper we correct previous work on magnetic charge plus a photon mass. We show that contrary to previous claims this system has a very simple, closed form solution which is the Dirac string potential multiplied by a exponential decaying part. Interesting features of this solution are discussed, namely, (i) the Dirac string becomes a real feature of the solution, (ii) the breaking of gauge symmetry via the photon mass leads to a breaking of the rotational symmetry of the monopoles magnetic field, (iii) the Dirac quantization condition is potentially altered.
It is possible that the expansion of the universe began with an inflationary phase, in which the inflaton driving the process also was a Higgs field capable of stabilizing magnetic monopoles in a grand-unified gauge theory. If so, then the smallness of intensity fluctuations observed in the cosmic microwave background radiation implies that the self-coupling of the inflaton-Higgs field was exceedingly weak. It is argued here that the resulting broad, flat maximum in the Higgs potential makes the presence or absence of a topological zero in the field insignificant for inflation. There may be monopoles present in the universe, but the universe itself is not in the inflating core of a giant magnetic monopole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا