ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective proton-neutron interaction near the drip line from unbound states in $^{25,26}$F

274   0   0.0 ( 0 )
 نشر من قبل Michel Lion
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Odd-odd nuclei, around doubly closed shells, have been extensively used to study proton-neutron interactions. However, the evolution of these interactions as a function of the binding energy, ultimately when nuclei become unbound, is poorly known. The $^{26}$F nucleus, composed of a deeply bound $pi0d_{5/2}$ proton and an unbound $ u0d_{3/2}$ neutron on top of an $^{24}$O core, is particularly adapted for this purpose. The coupling of this proton and neutron results in a $J^{pi} = 1^{+}_1 - 4^{+}_1$ multiplet, whose energies must be determined to study the influence of the proximity of the continuum on the corresponding proton-neutron interaction. The $J^{pi} = 1^{+}_1, 2^{+}_1,4^{+}_1$ bound states have been determined, and only a clear identification of the $J^{pi} =3^{+}_1$ is missing.Purpose: We wish to complete the study of the $J^{pi} = 1^{+}_1 - 4^{+}_1$ multiplet in $^{26}$F, by studying the energy and width of the $J^{pi} =3^{+}_1$ unbound state. The method was firstly validated by the study of unbound states in $^{25}$F, for which resonances were already observed in a previous experiment.Method: Radioactive beams of $^{26}$Ne and $^{27}$Ne, produced at about $440A$,MeV by the FRagment Separator at the GSI facility, were used to populate unbound states in $^{25}$F and $^{26}$F via one-proton knockout reactions on a CH$_2$ target, located at the object focal point of the R$^3$B/LAND setup. The detection of emitted $gamma$-rays and neutrons, added to the reconstruction of the momentum vector of the $A-1$ nuclei, allowed the determination of the energy of three unbound states in $^{25}$F and two in $^{26}$F. Results: Based on its width and decay properties, the first unbound state in $^{25}$F is proposed to be a $J^{pi} = 1/2^-$ arising from a $p_{1/2}$ proton-hole state. In $^{26}$F, the first resonance at 323(33)~keV is proposed to be the $J^{pi} =3^{+}_1$ member of the $J^{pi} = 1^{+}_1 - 4^{+}_1$ multiplet. Energies of observed states in $^{25,26}$F have been compared to calculations using the independent-particle shell model, a phenomenological shell-model, and the ab initio valence-space in-medium similarity renormalization group method.Conclusions: The deduced effective proton-neutron interaction is weakened by about 30-40% in comparison to the models, pointing to the need of implementing the role of the continuum in theoretical descriptions, or to a wrong determination of the atomic mass of $^{26}$F.



قيم البحث

اقرأ أيضاً

The very neutron-rich oxygen isotopes 25O and 26O are investigated experimentally and theoret- ically. In this first R3B-LAND experiment, the unbound states are populated at GSI via proton- knockout reactions from 26F and 27F at relativistic energies around 450 MeV/nucleon. From the kinematically complete measurement of the decay into 24O plus one or two neutrons, the 25O ground- state energy and lifetime are determined, and upper limits for the 26O ground state are extracted. In addition, the results provide evidence for an excited state in 26O at around 4 MeV. The ex- perimental findings are compared to theoretical shell-model calculations based on chiral two- and three-nucleon (3N) forces, including for the first time residual 3N forces, which are shown to be amplified as valence neutrons are added.
197 - A. Lepailleur 2013
A long-lived $J^{pi}=4_1^+$ isomer, $T_{1/2}=2.2(1)$ms, has been discovered at 643.4(1) keV in the weakly-bound $^{26}_{9}$F nucleus. It was populated at GANIL in the fragmentation of a $^{36}$S beam. It decays by an internal transition to the $J^{pi }=1_1^+$ ground state (82(14)%), by $beta$-decay to $^{26}$Ne, or beta-delayed neutron emission to $^{25}$Ne. From the beta-decay studies of the $J^{pi}=1_1^+$ and $J^{pi}=4_1^+$ states, new excited states have been discovered in $^{25,26}$Ne. Gathering the measured binding energies of the $J^{pi}=1_1^+-4_1^+$ multiplet in $^{26}_{9}$F, we find that the proton-neutron $pi 0d_{5/2} u 0d_{3/2}$ effective force used in shell-model calculations should be reduced to properly account for the weak binding of $^{26}_{9}$F. Microscopic coupled cluster theory calculations using interactions derived from chiral effective field theory are in very good agreement with the energy of the low-lying $1_1^+,2_1^+,4_1^+$ states in $^{26}$F. Including three-body forces and coupling to the continuum effects improve the agreement between experiment and theory as compared to the use of two-body forces only.
We report on the observation of excited states in the neutron-deficient phosphorus isotopes $^{26,27,28}$P via in-beam gamma-ray spectroscopy with both high-efficiency and high-resolution detector arrays. In $^{26}$P, a previously-unobserved level ha s been identified at 244(3) keV, two new measurements of the astrophysically-important 3/2$^+$ resonance in $^{27}$P have been performed, gamma decays have been assigned to the proton-unbound levels at 2216 keV and 2483 keV in $^{28}$P, and the gamma-ray lineshape method has been used to make the first determination of the lifetimes of the two lowest-lying excited states in $^{28}$P. The expected Thomas-Ehrman shifts were calculated and applied to levels in the mirror nuclei. The resulting level energies from this procedure were then compared with the energies of known states in $^{26,27,28}$P.
232 - N. Frank , T. Baumann , D. Bazin 2007
The two-proton knockout reaction 9Be(26Ne,O2p) was used to explore excited unbound states of 23O and 24O. In 23O a state at an excitation energy of 2.79(13) MeV was observed. There was no conclusive evidence for the population of excited states in 24O.
141 - G. Christian , N. Frank , S. Ash 2012
The ground state of $^{28}$F has been observed as an unbound resonance $2underline{2}0$ keV above the ground state of $^{27}$F. Comparison of this result with USDA/USDB shell model predictions leads to the conclusion that the $^{28}$F ground state is primarily dominated by $sd$-shell configurations. Here we present a detailed report on the experiment in which the ground state resonance of $^{28}$F was first observed. Additionally, we report the first observation of a neutron-unbound excited state in $^{27}$F at an excitation energy of $25underline{0}0 (2underline{2}0)$ keV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا