On the number of generators of powers of an ideal


الملخص بالإنكليزية

We study the number of generators of ideals in regular rings and ask the question whether $mu(I)<mu(I^2)$ if $I$ is not a principal ideal, where $mu(J)$ denotes the number of generators of an ideal $J$. We provide lower bounds for the number of generators for the powers of an ideal and also show that the CM-type of $I^2$ is $geq 3$ if $I$ is a monomial ideal of height $n$ in $K[x_1,ldots,x_n]$ and $ngeq 3$.

تحميل البحث