ﻻ يوجد ملخص باللغة العربية
Babson and Steingr{i}msson introduced generalized permutation patterns and showed that most of the Mahonian statistics in the literature can be expressed by the combination of generalized pattern functions. Particularly, they defined a new Mahonian statistic in terms of generalized pattern functions, which is denoted $stat$. Recently, Amini investigated the equidistributions of these Mahonian statistics over sets of pattern avoiding permutations. Moreover, he posed several conjectures. In this paper, we construct a bijection from $S_n(213)$ to $S_n(231)$, which maps the statistic $(maj,stat)$ to the statistic $(stat,maj)$. This allows us to give solutions to some of Aminis conjectures.
An alternating permutation of length $n$ is a permutation $pi=pi_1 pi_2 ... pi_n$ such that $pi_1 < pi_2 > pi_3 < pi_4 > ...$. Let $A_n$ denote set of alternating permutations of ${1,2,..., n}$, and let $A_n(sigma)$ be set of alternating permutations
The notion of a $p$-Riordan graph generalizes that of a Riordan graph, which, in turn, generalizes the notions of a Pascal graph and a Toeplitz graph. In this paper we introduce the notion of a $p$-Riordan word, and show how to encode $p$-Riordan gra
A permutation $sigmainmathfrak{S}_n$ is simsun if for all $k$, the subword of $sigma$ restricted to ${1,...,k}$ does not have three consecutive decreasing elements. The permutation $sigma$ is double simsun if both $sigma$ and $sigma^{-1}$ are simsun.
We prove a generalization of a conjecture of Dokos, Dwyer, Johnson, Sagan, and Selsor giving a recursion for the inversion polynomial of 321-avoiding permutations. We also answer a question they posed about finding a recursive formulas for the major
A emph{set partition} of the set $[n]={1,...c,n}$ is a collection of disjoint blocks $B_1,B_2,...c, B_d$ whose union is $[n]$. We choose the ordering of the blocks so that they satisfy $min B_1<min B_2<...b<min B_d$. We represent such a set partition