ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain Engineering a $4atimessqrt{3}a$ Charge Density Wave Phase in Transition Metal Dichalcogenide 1T-VSe$_2$

132   0   0.0 ( 0 )
 نشر من قبل Joseph Stroscio
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a rectangular charge density wave (CDW) phase in strained 1T-VSe$_2$ thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a{times}{sqrt{3a}} periodicity, as opposed to the previously reported hexagonal $4atimes4a$ structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same $4atimessqrt{3}a$ CDW periodicity and an energy gap of $2Delta_{CDW}=(9.1pm0.1)$ meV. The CDW energy gap evolves into a full gap at temperatures below 500 mK, indicating a transition to an insulating phase at ultra-low temperatures. First-principles calculations confirm the stability of both $4atimes4a$ and $4atimessqrt{3}a$ structures arising from soft modes in the phonon dispersion. The unconventional structure becomes preferred in the presence of strain, in agreement with experimental findings.



قيم البحث

اقرأ أيضاً

The transition metal dichalcogenide 1T-TaS2 attract growing attention because of the formation of rich density-wave (DW) and superconducting transitions. However, the origin of the incommensurate DW state at the highest temperature (~ 550 K), which i s the parent state of the rich physical phenomena, is still uncovered. Here, we present a natural explanation for the triple-q incommensurate DW in 1T-TaS2 based on the first-principles Hubbard model with on-site U. We apply the paramagnon interference mechanism that gives the nematic order in Fe-based superconductors. The derived order parameter has very unique characters: (i) the orbital-selective nature, and (ii) the unconventional sign-reversal in both momentum and energy spaces. The present study will be useful for understanding rich physics in 1T-TaS2, 1T-VSe2, and other transition metal dichalcogenides.
In the presence of multiple bands, well-known electronic instabilities may acquire new complexity. While multiband superconductivity is the subject of extensive studies, the possibility of multiband charge density waves (CDWs) has been largely ignore d so far. Here, combining energy dependent scanning tunnelling microscopy (STM) topography with a simple model of the charge modulations and a self-consistent calculation of the CDW gap, we find evidence for a multiband CDW in 2H-NbSe$_2$. This CDW not only involves the opening of a gap on the inner band around the K-point, but also on the outer band. This leads to spatially out-of-phase charge modulations from electrons on these two bands, which we detect through a characteristic energy dependence of the CDW contrast in STM images.
Charge density wave, or CDW, is usually associated with Fermi surfaces nesting. We here report a new CDW mechanism discovered in a 2H-structured transition metal dichalcogenide, where the two essential ingredients of CDW are realized in very anomalou s ways due to the strong-coupling nature of the electronic structure. Namely, the CDW gap is only partially open, and charge density wavevector match is fulfilled through participation of states of the large Fermi patch, while the straight FS sections have secondary or negligible contributions.
Charge density wave (CDW) is a collective quantum phenomenon in metals and features a wave-like modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in condensed matter physics. Here we report an interface and/or Zr intercalation induced semiconductor-metal phase transition, as well as a concomitant (2 $times$ 2) CDW order in 1T-ZrX$_2$ (X = Se, Te) thin films prepared on graphitized SiC(0001) substrates. Also observed has been a sizable CDW energy gap up to 22 meV opened at the Fermi level. Fourier-transformed scanning tunneling microscopy reveals a rather simple Fermi surface, consisting only of Zr 4d-derived conduction band at the corners of the Brillouin zone. Our finding that such a simple electronic structure is compatible with the CDW phase proves intriguing and challenges several prevailing scenarios for the formation of CDW in transition metal dichalcogenides.
300 - A. Gauzzi , A. Sellam , G. Rousse 2014
We report on a systematic study of the structural, magnetic and transport properties of high-purity 1T-VS$_2$ powder samples prepared under high pressure. The results differ notably from those previously obtained by de-intercalating Li from LiVS$_2$. First, no Charge Density Wave (CDW) is found by transmission electron microscopy down to 94 K. Though, textit{ab initio} phonon calculations unveil a latent CDW instability driven by an acoustic phonon softening at the wave vector ${bf q}_{CDW} approx$ (0.21,0.21,0) previously reported in de-intercalated samples. A further indication of latent lattice instability is given by an anomalous expansion of the V-S bond distance at low temperature. Second, infrared optical absorption and electrical resistivity measurements give evidence of non metallic properties, consistent with the observation of no CDW phase. On the other hand, magnetic susceptibility and NMR data suggest the coexistence of localized moments with metallic carriers, in agreement with textit{ab initio} band structure calculations. This discrepancy is reconciled by a picture of electron localization induced by disorder or electronic correlations leading to a phase separation of metallic and non-metallic domains in the nm scale. We conclude that 1T-VS$_2$ is at the verge of a CDW transition and suggest that residual electronic doping in Li de-intercalated samples stabilizes a uniform CDW phase with metallic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا