ﻻ يوجد ملخص باللغة العربية
We present a variational method for approximating the ground state of spin models close to (Richardson-Gaudin) integrability. This is done by variationally optimizing eigenstates of integrable Richardson-Gaudin models, where the toolbox of integrability allows for an efficient evaluation and minimization of the energy functional. The method is shown to return exact results for integrable models and improve substantially on perturbation theory for models close to integrability. For large integrability-breaking interactions, it is shown how (avoided) level crossings necessitate the use of excited states of integrable Hamiltonians in order to accurately describe the ground states of general non-integrable models.
This thesis presents an introduction to the class of Richardson-Gaudin integrable models, with special focus on the Bethe ansatz wave function, and investigates ways of applying the properties of Richardson-Gaudin models both in and out of integrabil
Pairing correlations in the even-even A=102-130 Sn isotopes are discussed, based on the Richardson-Gaudin variables in an exact Woods-Saxon plus reduced BCS pairing framework. The integrability of the model sheds light on the pairing correlations, in
We suggest the notion of perfect integrability for quantum spin chains and conjecture that quantum spin chains are perfectly integrable. We show the perfect integrability for Gaudin models associated to simple Lie algebras of all finite types, with p
We study the fate of interacting quantum systems which are periodically driven by switching back and forth between two integrable Hamiltonians. This provides an unconventional and tunable way of breaking integrability, in the sense that the strobosco
In specific open systems with collective dissipation the Liouvillian can be mapped to a non-Hermitian Hamiltonian. We here consider such a system where the Liouvillian is mapped to an XXZ Richardson-Gaudin integrable model and detail its exact Bethe