ﻻ يوجد ملخص باللغة العربية
Euler-symmetric projective varieties are nondegenerate projective varieties admitting many C*-actions of Euler type. They are quasi-homogeneous and uniquely determined by their fundamental forms at a general point. We show that Euler-symmetric projective varieties can be classified by symbol systems, a class of algebraic objects modeled on the systems of fundamental forms at general points of projective varieties. We study relations between the algebraic properties of symbol systems and the geometric properties of Euler-symmetric projective varieties. We describe also the relation between Euler-symmetric projective varieties of dimension n and equivariant compactifications of the vector group G_a^n.
We generalise Flo{}ystads theorem on the existence of monads on the projective space to a larger set of projective varieties. We consider a variety $X$, a line bundle $L$ on $X$, and a base-point-free linear system of sections of $L$ giving a morphis
We show various properties of smooth projective D-affine varieties. In particular, any smooth projective D-affine variety is algebraically simply connected and its image under a fibration is D-affine. In characteristic zero such D-affine varieties ar
We continue our study on smooth complex projective varieties $X$ of maximal Albanese dimension and of general type satisfying $chi(X, omega_X)=0$. We formulate a conjectural characterization of such varieties and prove this conjecture when the Albanese variety has only three simple factors.
We prove a structure theorem for projective varieties with nef anticanonical divisors.
We prove that the kernel bundle of the evaluation morphism of global sections, namely the syzygy bundle, of a sufficiently ample line bundle on a smooth projective variety is slope stable with respect to any polarization. This settles a conjecture of Ein-Lazarsfeld-Mustopa.