ﻻ يوجد ملخص باللغة العربية
A systematic study of the structural and magnetic properties of three-dimensionally frustrated lanthanide garnets $Ln_3A_2X_3text{O}_{12}$, $Ln$ = Gd, Tb, Dy, Ho, $A$ = Ga, Sc, In, Te, $X$ = Ga, Al, Li is presented. Garnets with $Ln$ = Gd show magnetic behaviour consistent with isotropic Gd$^{3+}$ spins; no magnetic ordering is observed for T $geq$ 0.4 K. Magnetic ordering features are seen for garnets with $Ln$ = Tb, Dy, Ho in the temperature range 0.4 < T < 2.5 K, however the nature of the magnetic ordering varies for the different $Ln$ as well as for different combinations of $A$ and $X$. The changes in magnetic behaviour can be explained by tuning of the magnetic interactions and changes in the single-ion anisotropy. The change in magnetic entropy is evaluated from isothermal magnetisation measurements to characterise the magnetocaloric effect in these materials. Among the Gd garnets, the maximum change in magnetic entropy per mole (15.45 J K$^{-1}$ mol$_{text{Gd}}^{-1}$) is observed for Gd$_3$Sc$_2$Ga$_3$O$_{12}$ at 2 K, in a field of 9 T. The performance of Dy$_3$Ga$_5$O$_{12}$ as a magnetocaloric material surpasses the other garnets with $Ln$ = Tb, Dy, Ho.
The lanthanide orthoborates, $Ln$BO$_3$, $Ln$ = Gd, Tb, Dy, Ho, Er, Yb crystallise in a monoclinic structure with the magnetic $Ln^{3+}$ forming an edge-sharing triangular lattice. The triangles are scalene, however all deviations from the ideal equi
A detailed study on the crystal structure and bulk magnetic properties of Cr substituted Ising type lanthanide gallium garnets $Ln_3text{CrGa}_4text{O}_{12}$ ($Ln$ = Tb, Dy, Ho) has been carried out using room temperature powder X-Ray and neutron dif
The transverse acoustic wave propagating along the [100] axis of the cubic Tb$_3$Ga$_5$O$_{12}$ (acoustic $c_{44}$ mode) is doubly degenerate. A magnetic field applied in the direction of propagation lifts this degeneracy and leads to the rotation of
Terbium gallium garnet (TGG), Tb$_3$Ga$_5$O$_{12}$, is well known for its applications in laser optics, but also exhibits complex low-temperature magnetism that is not yet fully understood. Its low-temperature magnetic order is determined by means of
The bulk magnetic properties of the lanthanide metaborates, $Ln$(BO$_2$)$_3$, $Ln$ = Pr, Nd, Gd, Tb are studied using magnetic susceptibility, heat capacity and isothermal magnetisation measurements. They crystallise in a monoclinic structure contain