ﻻ يوجد ملخص باللغة العربية
We formulate a Chern-Simons composite fermion theory for Fractional Chern Insulators (FCIs), whereby bare fermions are mapped into composite fermions coupled to a lattice Chern-Simons gauge theory. We apply this construction to a Chern insulator model on the kagome lattice and identify a rich structure of gapped topological phases characterized by fractionalized excitations including states with unequal filling and Hall conductance. Gapped states with the same Hall conductance at different filling fractions are characterized as realizing distinct symmetry fractionalization classes.
We propose a (4+1) dimensional Chern-Simons field theoretical description of the fractional quantum Hall effect. It suggests that composite fermions reside on a momentum manifold with a nonzero Chern number. Based on derivations from microscopic wave
We report on the numerically exact simulation of the dissipative dynamics governed by quantum master equations that feature fractional quantum Hall states as unique steady states. In particular, for the paradigmatic Hofstadter model, we show how Laug
We investigate the problem of intertwined orders in fractional Chern insulators by considering lattice fractional quantum Hall (FQH) states arising from pairing of composite fermions in the square-lattice Hofstadter model. At certain filling fraction
Even if a noninteracting system has zero Berry curvature everywhere in the Brillouin zone, it is possible to introduce interactions that stabilise a fractional Chern insulator. These interactions necessarily break time-reversal symmetry (either spont
Motivated by the recent work of QED$_3$-Chern-Simons quantum critical points of fractional Chern insulators (Phys. Rev. X textbf{8}, 031015, (2018)), we study its non-Abelian generalizations, namely QCD$_3$-Chern-Simons quantum phase transitions of f