ﻻ يوجد ملخص باللغة العربية
Transverse electromagnetic plane waves are fundamental solutions of Maxwells equations. It is less known that a radically different type of solutions has been described theoretically, but has never been realized experimentally, that exist only in the form of short burst of electromagnetic energy propagating in free-space at the speed of light. They are distinguished from transverse waves by a donut-like configuration of electric and magnetic fields with a strong field component along the propagation direction. Here, we report that such Flying Donuts can be generated from conventional pulses using a singular metamaterial converter designed to manipulate both the spatial and spectral structure of the input pulse. The ability to generate Flying Donuts is of fundamental interest, as they shall interact with matter in unique ways, including non-trivial field transformations upon reflection from interfaces and the excitation of toroidal response and anapole modes in matter, thus offering new opportunities for telecommunications, sensing, and spectroscopy.
We report a realization of three-dimensional (3D) electromagnetic void space. Despite occupying a finite volume of space, such a medium is optically equivalent to an infinitesimal point where electromagnetic waves experience no phase accumulation. Th
The review is devoted to a discussion of new (and often unexpected) aspects of the old problem of elastic light scattering by small metal particles, whose size is comparable to or smaller than the thickness of the skin layer. The main focus is put on
Metasurfaces have shown unprecedented possibilities for wavefront manipulation of waves. The research efforts have been focused on the development of metasurfaces that perform a specific functionality for waves of one physical nature, for example, fo
Optical bottle beams can be used to trap atoms and small low-index particles. We introduce a figure of merit for optical bottle beams, specifically in the context of optical traps, and use it to compare optical bottle-beam traps obtained by three dif
Thin film optical elements exhibiting translational invariance, and thus robustness to optical misalignment, are crucial for rapid development of compact and integrated optical devices. In this letter, we experimentally demonstrate a beam-shaping ele