ﻻ يوجد ملخص باللغة العربية
Modulational instabilities play a key role in a wide range of nonlinear optical phenomena, leading e.g. to the formation of spatial and temporal solitons, rogue waves and chaotic dynamics. Here we experimentally demonstrate the existence of a modulational instability in condensates of cavity polaritons, arising from the strong coupling of cavity photons with quantum well excitons. For this purpose we investigate the spatiotemporal coherence properties of polariton condensates in GaAs-based microcavities under continuous-wave pumping. The chaotic behavior of the instability results in a strongly reduced spatial and temporal coherence and a significantly inhomogeneous density. Additionally we show how the instability can be tamed by introducing a periodic potential so that condensation occurs into negative mass states, leading to largely improved coherence and homogeneity. These results pave the way to the exploration of long-range order in dissipative quantum fluids of light within a controlled platform.
We develop a theory for the dynamics of the density matrix describing a multimode polariton condensate. In such a condensate several single-particle orbitals become highly occupied, due to stimulated scattering from reservoirs of high-energy excitons
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity thresh
We report on the engineering of a non-dispersive (flat) energy band in a geometrically frustrated lattice of micro-pillar optical cavities. By taking advantage of the non-hermitian nature of our system, we achieve bosonic condensation of exciton-pola
We present a study of the Rayleigh-Taylor unstable regime of accretion onto rotating magnetized stars in a set of high grid resolution three-dimensional (3D) magnetohydrodynamic (MHD) simulations performed in low-viscosity discs. We find that the bou
We predict the existence of non-Hermitian topologically protected end states in a one-dimensional exciton-polariton condensate lattice, where topological transitions are driven by the laser pump pattern. We show that the number of end states can be d