ترغب بنشر مسار تعليمي؟ اضغط هنا

Second order stochastic differential models for financial markets

122   0   0.0 ( 0 )
 نشر من قبل Nguyen Tien Zung
 تاريخ النشر 2017
  مجال البحث مالية
والبحث باللغة English
 تأليف Nguyen Tien Zung




اسأل ChatGPT حول البحث

Using agent-based modelling, empirical evidence and physical ideas, such as the energy function and the fact that the phase space must have twice the dimension of the configuration space, we argue that the stochastic differential equations which describe the motion of financial prices with respect to real world probability measures should be of second order (and non-Markovian), instead of first order models `a la Bachelier--Samuelson. Our theoretical result in stochastic dynamical systems shows that one cannot correctly reduce second order models to first order models by simply forgetting about momenta. We propose some simple second order models, including a stochastic constrained n-oscillator, which can explain many market phenomena, such as boom-bust cycles, stochastic quasi-periodic behavior, and hot money going from one market sector to another.



قيم البحث

اقرأ أيضاً

121 - Ben Boukai 2021
Following Boukai (2021) we present the Generalized Gamma (GG) distribution as a possible RND for modeling European options prices under Hestons (1993) stochastic volatility (SV) model. This distribution is seen as especially useful in situations in w hich the spots price follows a negatively skewed distribution and hence, Black-Scholes based (i.e. the log-normal distribution) modeling is largely inapt. We apply the GG distribution as RND to modeling current market option data on three large market-index ETFs, namely the SPY, IWM and QQQ as well as on the TLT (an ETF that tracks an index of long term US Treasury bonds). The current option chain of each of the three market-index ETFs shows of a pronounced skew of their volatility `smile which indicates a likely distortion in the Black-Scholes modeling of such option data. Reflective of entirely different market expectations, this distortion appears not to exist in the TLT option data. We provide a thorough modeling of the available option data we have on each ETF (with the October 15, 2021 expiration) based on the GG distribution and compared it to the option pricing and RND modeling obtained directly from a well-calibrated Hestons (1993) SV model (both theoretically and empirically, using Monte-Carlo simulations of the spots price). All three market-index ETFs exhibit negatively skewed distributions which are well-matched with those derived under the GG distribution as RND. The inadequacy of the Black-Scholes modeling in such instances which involve negatively skewed distribution is further illustrated by its impact on the hedging factor, delta, and the immediate implications to the retail trader. In contrast, for the TLT ETF, which exhibits no such distortion to the volatility `smile, the three pricing models (i.e. Hestons, Black-Scholes and Generalized Gamma) appear to yield similar results.
109 - Zhi-Feng Huang 2000
A self-organized model with social percolation process is proposed to describe the propagations of information for different trading ways across a social system and the automatic formation of various groups within market traders. Based on the market structure of this model, some stylized observations of real market can be reproduced, including the slow decay of volatility correlations, and the fat tail distribution of price returns which is found to cross over to an exponential-type asymptotic decay in different dimensional systems.
The Glosten-Milgrom model describes a single asset market, where informed traders interact with a market maker, in the presence of noise traders. We derive an analogy between this financial model and a Szilard information engine by {em i)} showing th at the optimal work extraction protocol in the latter coincides with the pricing strategy of the market maker in the former and {em ii)} defining a market analogue of the physical temperature from the analysis of the distribution of market orders. Then we show that the expected gain of informed traders is bounded above by the product of this market temperature with the amount of information that informed traders have, in exact analogy with the corresponding formula for the maximal expected amount of work that can be extracted from a cycle of the information engine. This suggests that recent ideas from information thermodynamics may shed light on financial markets, and lead to generalised inequalities, in the spirit of the extended second law of thermodynamics.
We consider models of financial markets in which all parties involved find incentives to participate. Strategies are evaluated directly by their virtual wealths. By tuning the price sensitivity and market impact, a phase diagram with several attracto r behaviors resembling those of real markets emerge, reflecting the roles played by the arbitrageurs and trendsetters, and including a phase with irregular price trends and positive sums. The positive-sumness of the players wealths provides participation incentives for them. Evolution and the bid-ask spread provide mechanisms for the gain in wealth of both the players and market-makers. New players survive in the market if the evolutionary rate is sufficiently slow. We test the applicability of the model on real Hang Seng Index data over 20 years. Comparisons with other models show that our model has a superior average performance when applied to real financial data.
140 - Jun Sekine , Akihiro Tanaka 2020
The X-valuation adjustment (XVA) problem, which is a recent topic in mathematical finance, is considered and analyzed. First, the basic properties of backward stochastic differential equations (BSDEs) with a random horizon in a progressively enlarged filtration are reviewed. Next, the pricing/hedging problem for defaultable over-the-counter (OTC) derivative securities is described using such BSDEs. An explicit sufficient condition is given to ensure the non-existence of an arbitrage opportunity for both the seller and buyer of the derivative securities. Furthermore, an explicit pricing formula is presented in which XVA is interpreted as approximated correction terms of the theoretical fair price.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا