ﻻ يوجد ملخص باللغة العربية
Eigenstates of fully many-body localized (FMBL) systems are described by quasilocal operators $tau_i^z$ (l-bits), which are conserved exactly under Hamiltonian time evolution. The algebra of the operators $tau_i^z$ and $tau_i^x$ associated with l-bits ($boldsymbol{tau}_i$) completely defines the eigenstates and the matrix elements of local operators between eigenstates at all energies. We develop a non-perturbative construction of the full set of l-bit algebras in the many-body localized phase for the canonical model of MBL. Our algorithm to construct the Pauli-algebra of l-bits combines exact diagonalization and a tensor network algorithm developed for efficient diagonalization of large FMBL Hamiltonians. The distribution of localization lengths of the l-bits is evaluated in the MBL phase and used to characterize the MBL-to-thermal transition.
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across the many-body localization transition (MBLT) in a disordered spi
We propose a new approach to probing ergodicity and its breakdown in quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the systems eigenstates, finding
It is typically assumed that disorder is essential to realize Anderson localization. Recently, a number of proposals have suggested that an interacting, translation invariant system can also exhibit localization. We examine these claims in the contex
We study the many body localization (MBL) transition for interacting fermions subject to quasiperiodic potentials by constructing the local integrals of motion (LIOMs) in the MBL phase as time-averaged local operators. We study numerically how these
We discuss the onset of many body localisation in a one-dimensional system composed of a XXZ quantum spin chain and a Bose-Hubbard model linearly coupled together. We consider two complementary setups depending whether spatial disorder is initially i