ﻻ يوجد ملخص باللغة العربية
The chemical yields of supernovae and the metal enrichment of the hot intra-cluster medium (ICM) are not well understood. This paper introduces the CHEmical Enrichment RGS Sample (CHEERS), which is a sample of 44 bright local giant ellipticals, groups and clusters of galaxies observed with XMM-Newton. This paper focuses on the abundance measurements of O and Fe using the reflection grating spectrometer (RGS). The deep exposures and the size of the sample allow us to quantify the intrinsic scatter and the systematic uncertainties in the abundances using spectral modeling techniques. We report the oxygen and iron abundances as measured with RGS in the core regions of all objects in the sample. We do not find a significant trend of O/Fe as a function of cluster temperature, but we do find an intrinsic scatter in the O and Fe abundances from cluster to cluster. The level of systematic uncertainties in the O/Fe ratio is estimated to be around 20-30%, while the systematic uncertainties in the absolute O and Fe abundances can be as high as 50% in extreme cases. We were able to identify and correct a systematic bias in the oxygen abundance determination, which was due to an inaccuracy in the spectral model. The lack of dependence of O/Fe on temperature suggests that the enrichment of the ICM does not depend on cluster mass and that most of the enrichment likely took place before the ICM was formed. We find that the observed scatter in the O/Fe ratio is due to a combination of intrinsic scatter in the source and systematic uncertainties in the spectral fitting, which we are unable to disentangle. The astrophysical source of intrinsic scatter could be due to differences in AGN activity and ongoing star formation in the BCG. The systematic scatter is due to uncertainties in the spatial line broadening, absorption column, multi-temperature structure and the thermal plasma models. (Abbreviated).
Massive black holes (MBHs) are nowadays recognized as integral parts of galaxy evolution. Both the approximate proportionality between MBH and galaxy mass, and the expected importance of feedback from active MBHs in regulating star formation in their
We report on the first phase of our study of cloud irradiation. We study irradiation by means of numerical, two-dimensional time-dependent radiation-hydrodynamic simulations of a cloud irradiated by a strong radiation. We adopt a very simple treatmen
We analyse the demographics of black holes (BHs) in the large-volume cosmological hydrodynamical simulation Horizon-AGN. This simulation statistically models how much gas is accreted onto BHs, traces the energy deposited into their environment and, c
The next generation of electromagnetic and gravitational wave observatories will open unprecedented windows to the birth of the first supermassive black holes. This has the potential to reveal their origin and growth in the first billion years, as we
Primordial supermassive stars (SMSs) formed in atomic-cooling halos at z ~ 15 - 20 are leading candidates for the seeds of the first quasars. Past numerical studies of the evolution of SMSs have typically assumed constant accretion rates rather than