ترغب بنشر مسار تعليمي؟ اضغط هنا

The VMC Survey. XXV. The 3D structure of the Small Magellanic Cloud from Classical Cepheids

76   0   0.0 ( 0 )
 نشر من قبل Vincenzo Ripepi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The VISTA near-infrared YJKs survey of the Magellanic System (VMC) is collecting deep Ks-band time-series photometry of pulsating stars hosted by the two Magellanic Clouds and their connecting Bridge. Here we present YJKs light curves for a sample of 717 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with our previous results and V magnitude from literature, allowed us to construct a variety of period-luminosity and period-Wesenheit relationships, valid for Fundamental, First and Second Overtone pulsators. These relations provide accurate individual distances to CCs in the SMC over an area of more than 40 sq. deg. Adopting literature relations, we estimated ages and metallicities for the majority of the investigated pulsators, finding that: i) the age distribution is bimodal, with two peaks at 120+-10 and 220+-10 Myr; ii) the more metal-rich CCs appear to be located closer to the centre of the galaxy. Our results show that the three-dimensional distribution of the CCs in the SMC, is not planar but heavily elongated for more than 25-30 kpc approximately in the east/north-east towards south-west direction. The young and old CCs in the SMC show a different geometric distribution. Our data support the current theoretical scenario predicting a close encounter or a direct collision between the Clouds some 200 Myr ago and confirm the presence of a Counter-Bridge predicted by some models. The high precision three-dimensional distribution of young stars presented in this paper provides a new testbed for future models exploring the formation and evolution of the Magellanic System.



قيم البحث

اقرأ أيضاً

We present Ks -band light curves for 299 Cepheids in the Small Magellanic Cloud (SMC) of which 288 are new discoveries that we have identified using multi-epoch near-infrared photometry obtained by the VISTA survey of the Magellanic Clouds system (VM C). The new Cepheids have periods in the range from 0.34 to 9.1 days and cover the magnitude interval 12.9 <= Ks <= 17.6 mag. Our method was developed using variable stars previously identified by the optical microlensing survey OGLE. We focus on searching new Cepheids in external regions of the SMC for which complete VMC Ks-band observations are available and no comprehensive identification of different types of variable stars from other surveys exists yet.
Galaxy interactions distort the distribution of baryonic matter and can affect star formation. The nearby Magellanic Clouds are a prime example of an ongoing galaxy interaction process. Here we use the intermediate-age ($sim1$-$10$ Gyr) red clump sta rs to map the three-dimensional structure of the Small Magellanic Cloud (SMC) and interpret it within the context of its history of interaction with the Large Magellanic Cloud (LMC) and the Milky Way. Red clump stars are selected from near-infrared colour-magnitude diagrams based on data from the VISTA survey of the Magellanic Clouds. Interstellar reddening is measured and removed, and the corrected brightness is converted to a distance, on a star-by-star basis. A flat plane fitted to the spatial distribution of red clump stars has an inclination $i=35deg$-$48deg$ and position angle PA$=170deg$-$186deg$. However, significant deviations from this plane are seen, especially in the periphery and on the eastern side of the SMC. In the latter part, two distinct populations are present, separated in distance by as much as 10 kpc. Distant red clump stars are seen in the North of the SMC, and possibly also in the far West; these might be associated with the predicted `Counter-Bridge. We also present a dust reddening map, which shows that dust generally traces stellar mass. The structure of the intermediate-age stellar component of the SMC bears the imprints of strong interaction with the LMC a few Gyr ago, which cannot be purely tidal but must have involved ram pressure stripping.
We present results from the analysis of 2997 fundamental mode RR Lyrae variables located in the Small Magellanic Cloud (SMC). For these objects near-infrared time-series photometry from the VISTA survey of the Magellanic Clouds system (VMC) and visua l light curves from the OGLE IV survey are available. In this study the multi-epoch $K_{rm s}$-band VMC photometry was used for the first time to derive intensity-averaged magnitudes of the SMC RR Lyrae stars. We determined individual distances to the RR Lyrae stars from the near-infrared period-absolute magnitude-metallicity ($PM_{K_{rm s}}Z$) relation, which has a number of advantages in comparison with the visual absolute magnitude-metallicity ($M_{V}-{rm [Fe/H]}$) relation, such as a smaller dependence of the luminosity on interstellar extinction, evolutionary effects and metallicity. The distances we have obtained were used to study the three-dimensional structure of the SMC. The distribution of the SMC RR Lyrae stars is found to be ellipsoidal. The actual line-of-sight depth of the SMC is in the range from 1 to 10 kpc, with an average depth of 4.3 $pm$ 1.0 kpc. We found that RR Lyrae stars in the eastern part of the SMC are affected by interactions of the Magellanic Clouds. However, we do not see a clear bimodality in the distribution of RR Lyrae stars as observed for red clump (RC) stars.
We present the results of the chi2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of 9 fundamental and 3 first overtone classical Cepheids in the Small Magellanic Cloud (SMC ). The near- infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey VISTA near-infrared Y; J;Ks survey of the Magellanic Clouds system(VMC). For each pulsator isoperiodic model sequences have been computed by adopting a nonlinear convective hydrodynamical code in order to reproduce the multi- filter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover the instrinsic masses and luminosities of the best fitting model show that all these pulsators are brighter than the canonical evolutionary Mass- Luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass loss. Assuming that the inferred deviation from the canonical MLR is only due to mass loss, we derive the expected distribution of percentage mass loss as a function of both the pulsation period and of the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current Period-Radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way to the application to other extensive databases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.
In this paper we report a clustering analysis of upper main-sequence stars in the Small Magellanic Cloud, using data from the VMC survey (the VISTA near-infrared YJKs survey of the Magellanic system). Young stellar structures are identified as surfac e overdensities on a range of significance levels. They are found to be organized in a hierarchical pattern, such that larger structures at lower significance levels contain smaller ones at higher significance levels. They have very irregular morphologies, with a perimeter-area dimension of 1.44 +/- 0.02 for their projected boundaries. They have a power-law mass-size relation, power-law size/mass distributions, and a lognormal surface density distribution. We derive a projected fractal dimension of 1.48 +/- 0.03 from the mass-size relation, or of 1.4 +/- 0.1 from the size distribution, reflecting significant lumpiness of the young stellar structures. These properties are remarkably similar to those of a turbulent interstellar medium (ISM), supporting a scenario of hierarchical star formation regulated by supersonic turbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا