ﻻ يوجد ملخص باللغة العربية
We present observational analysis of two successive two-sided loop jets observed by the ground-based New Vacuum Solar Telescope (NVST) and the space-borne Solar Dynamics Observatory ( SDO). The two successive two-sided loop jets manifested similar evolution process and both were associated with the interaction of two small-scale adjacent filamentary threads, magnetic emerging and cancellation processes at the jets source region. High temporal and high spatial resolution observations reveal that the two adjacent ends of the two filamentary threads are rooted in opposite magnetic polarities within the source region. The two threads approached to each other, and then an obvious brightening patch is observed at the interaction position. Subsequently, a pair of hot plasma ejections are observed heading to opposite directions along the paths of the two filamentary threads, and with a typical speed of two-sided loop jets of the order 150 km/s. Close to the end of the second jet, we report the formation of a bright hot loop structure at the source region, which suggests the formation of new loops during the interaction. Based on the observational results, we propose that the observed two-sided loop jets are caused by the magnetic reconnection between the two adjacent filamentary threads, largely different from the previous scenario that a two-sided loop jet is generated by magnetic reconnection between an emerging bipole and the overlying horizontal magnetic fields.
Using high spatial and temporal data from the New Vacuum Solar Telescope (NVST) and the Solar Dynamics Observatory (SDO), we present unambiguous observations of recurrent two-sided loop jets caused by magnetic reconnection between erupting minifilame
Coronal jets are always produced by magnetic reconnection between emerging flux and pre-existing overlying magnetic fields. When the overlying field is vertical/obilique or horizontal, the coronal jet will appear as anemone type or two-sided-loop typ
Employing Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we report the coronal condensation during the magnetic reconnection (MR) between a system of open and closed coronal loops. Higher-lying magnetical
A second emission enhancement in warm coronal extreme-ultraviolet (EUV) lines (about 2-7 MK) during some solar flares is known as the EUV late phase. Imaging observations confirm that the late phase emission originates from a set of longer or higher
Magnetic reconnection modulated by non-local disturbances in the solar atmosphere has been investigated theoretically, but rarely observed. In this study, employing Ha and extreme ultraviolet (EUV) images and line of sight magnetograms, we report acc