ﻻ يوجد ملخص باللغة العربية
Stellar-mass Primordial Black Holes (PBH) have been recently reconsidered as a Dark Matter (DM) candidate, after the aLIGO discovery of several binary BH mergers with masses of tens of $M_odot$. Matter accretion on such massive objects leads to the emission of high-energy photons, capable of altering the ionization and thermal history of the universe. This in turn affects the statistical properties of the cosmic microwave background (CMB) anisotropies. Previous analyses have assumed spherical accretion. We argue that this approximation likely breaks down and that an accretion disk should form in the dark ages. Using the most up-to-date tools to compute the energy deposition in the medium, we derive constraints on the fraction of DM in PBH. Provided that disks form early on, even under conservative assumptions for accretion, these constraints exclude a monochromatic distribution of PBH with masses above $sim 2, M_odot$ as the dominant form of DM. The bound on the median PBH mass gets more stringent if a broad, log-normal mass function is considered. A deepened understanding of non-linear clustering properties and BH accretion disk physics would permit an improved treatment and possibly lead to more stringent constraints.
Baryonic gas falling onto a primordial black hole (PBH) emits photons via the free-free process. These photons can contribute the diffuse free-free background radiation in the frequency range of the cosmic microwave background radiation (CMB). We sho
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation,
Cascade of particles injected as Hawking Radiation from Primordial Black Holes (PBH) can potentially change the cosmic recombination history by ionizing and heating the intergalactic medium, which results in altering the anisotropy spectra of the Cos
Even if massive ($10,M_odot lesssim M lesssim 10^4 M_odot$) primordial black holes (PBHs) can only account for a small fraction of the dark matter (DM) in the universe, they may still be responsible for a sizable fraction of the coalescence events me
The dark matter (DM) can consist of the primordial black holes (PBHs) in addition to the conventional weakly interacting massive particles (WIMPs). The Poisson fluctuations of the PBH number density produce the isocurvature perturbations which can do